首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Small area estimation has received considerable attention in recent years because of growing demand for small area statistics. Basic area‐level and unit‐level models have been studied in the literature to obtain empirical best linear unbiased prediction (EBLUP) estimators of small area means. Although this classical method is useful for estimating the small area means efficiently under normality assumptions, it can be highly influenced by the presence of outliers in the data. In this article, the authors investigate the robustness properties of the classical estimators and propose a resistant method for small area estimation, which is useful for downweighting any influential observations in the data when estimating the model parameters. To estimate the mean squared errors of the robust estimators of small area means, a parametric bootstrap method is adopted here, which is applicable to models with block diagonal covariance structures. Simulations are carried out to study the behaviour of the proposed robust estimators in the presence of outliers, and these estimators are also compared to the EBLUP estimators. Performance of the bootstrap mean squared error estimator is also investigated in the simulation study. The proposed robust method is also applied to some real data to estimate crop areas for counties in Iowa, using farm‐interview data on crop areas and LANDSAT satellite data as auxiliary information. The Canadian Journal of Statistics 37: 381–399; 2009 © 2009 Statistical Society of Canada  相似文献   

2.
Data from past time periods and temporal correlation are rich sources of information for estimating small area parameters at the current period. This paper investigates the use of unit-level temporal linear mixed models for estimating linear parameters. Two models are considered, with domain and domain-time random effects. The first model assumes time independency and the second one AR(1)-type time correlation. They are fitted by a Fisher-scoring algorithm that calculates the residual maximum likelihood estimators of the model parameters. Based on the introduced models, empirical best linear unbiased predictors of small area linear parameters are studied, and analytic estimators for evaluating the performance of their mean squared errors are proposed. Three simulation experiments are carried out to study the behaviour of the fitting algorithm, the small area predictors and the estimators of the mean squared error. By using data of the Spanish surveys of income and living conditions of 2004–2008, an application to the estimation of 2008 average normalized net annual incomes in Spanish provinces by sex is given.  相似文献   

3.
Empirical Bayes (EB) estimates in general linear mixed models are useful for the small area estimation in the sense of increasing precision of estimation of small area means. However, one potential difficulty of EB is that the overall estimate for a larger geographical area based on a (weighted) sum of EB estimates is not necessarily identical to the corresponding direct estimate such as the overall sample mean. Another difficulty is that EB estimates yield over‐shrinking, which results in the sampling variance smaller than the posterior variance. One way to fix these problems is the benchmarking approach based on the constrained empirical Bayes (CEB) estimators, which satisfy the constraints that the aggregated mean and variance are identical to the requested values of mean and variance. In this paper, we treat the general mixed models, derive asymptotic approximations of the mean squared error (MSE) of CEB and provide second‐order unbiased estimators of MSE based on the parametric bootstrap method. These results are applied to natural exponential families with quadratic variance functions. As a specific example, the Poisson‐gamma model is dealt with, and it is illustrated that the CEB estimates and their MSE estimates work well through real mortality data.  相似文献   

4.
Non‐parametric estimation and bootstrap techniques play an important role in many areas of Statistics. In the point process context, kernel intensity estimation has been limited to exploratory analysis because of its inconsistency, and some consistent alternatives have been proposed. Furthermore, most authors have considered kernel intensity estimators with scalar bandwidths, which can be very restrictive. This work focuses on a consistent kernel intensity estimator with unconstrained bandwidth matrix. We propose a smooth bootstrap for inhomogeneous spatial point processes. The consistency of the bootstrap mean integrated squared error (MISE) as an estimator of the MISE of the consistent kernel intensity estimator proves the validity of the resampling procedure. Finally, we propose a plug‐in bandwidth selection procedure based on the bootstrap MISE and compare its performance with several methods currently used through both as a simulation study and an application to the spatial pattern of wildfires registered in Galicia (Spain) during 2006.  相似文献   

5.
For randomly censored data, the authors propose a general class of semiparametric median residual life models. They incorporate covariates in a generalized linear form while leaving the baseline median residual life function completely unspecified. Despite the non‐identifiability of the survival function for a given median residual life function, a simple and natural procedure is proposed to estimate the regression parameters and the baseline median residual life function. The authors derive the asymptotic properties for the estimators, and demonstrate the numerical performance of the proposed method through simulation studies. The median residual life model can be easily generalized to model other quantiles, and the estimation method can also be applied to the mean residual life model. The Canadian Journal of Statistics 38: 665–679; 2010 © 2010 Statistical Society of Canada  相似文献   

6.
Unit-level regression models are commonly used in small area estimation (SAE) to obtain an empirical best linear unbiased prediction of small area characteristics. The underlying assumptions of these models, however, may be unrealistic in some applications. Previous work developed a copula-based SAE model where the empirical Kendall's tau was used to estimate the dependence between two units from the same area. In this article, we propose a likelihood framework to estimate the intra-class dependence of the multivariate exchangeable copula for the empirical best unbiased prediction (EBUP) of small area means. One appeal of the proposed approach lies in its accommodation of both parametric and semi-parametric estimation approaches. Under each estimation method, we further propose a bootstrap approach to obtain a nearly unbiased estimator of the mean squared prediction error of the EBUP of small area means. The performance of the proposed methods is evaluated through simulation studies and also by a real data application.  相似文献   

7.
This article deals with the estimation of a fixed population size through capture-mark-recapture method that gives rise to hypergeometric distribution. There are a few well-known and popular point estimators available in the literature, but no good comprehensive comparison is available about their merits. Apart from the available estimators, an empirical Bayes (EB) estimator of the population size is proposed. We compare all the point estimators in terms of relative bias and relative mean squared error. Next, two new interval estimators – (a) an EB highest posterior distribution interval and (b) a frequentist interval estimator based on a parametric bootstrap method, are proposed. The comparison is then carried among the two proposed interval estimators and interval estimators derived from the currently available estimators in terms of coverage probability and average length (AL). Based on comprehensive numerical results, we rank and recommend the point estimators as well as interval estimators for practical use. Finally, a real-life data set for a green treefrog population is used as a demonstration for all the methods discussed.  相似文献   

8.
Let θ be a nonlinear function of the regression parameters and θ be its estimator based on the least-squares method. This paper studies the bootstrap estimators of the variance and bias of θ. The bootstrap estimators are shown to be consistent and asymptotically unbiased under some conditions. Asymptotic orders of the mean squared errors of the bootstrap estimators are also obtained. The bootstrap and the classical linearization method are compared in a simulation study. Discussions about when to use the bootstrap are given.  相似文献   

9.
Concerning the estimation of linear parameters in small areas, a nested-error regression model is assumed for the values of the target variable in the units of a finite population. Then, a bootstrap procedure is proposed for estimating the mean squared error (MSE) of the EBLUP under the finite population setup. The consistency of the bootstrap procedure is studied, and a simulation experiment is carried out in order to compare the performance of two different bootstrap estimators with the approximation given by Prasad and Rao [Prasad, N.G.N. and Rao, J.N.K., 1990, The estimation of the mean squared error of small-area estimators. Journal of the American Statistical Association, 85, 163–171.]. In the numerical results, one of the bootstrap estimators shows a better bias behavior than the Prasad–Rao approximation for some of the small areas and not much worse in any case. Further, it shows less MSE in situations of moderate heteroscedasticity and under mispecification of the error distribution as normal when the true distribution is logistic or Gumbel. The proposed bootstrap method can be applied to more general types of parameters (linear of not) and predictors.  相似文献   

10.
For a general linear mixed normal model, a new linearized weighted jackknife method is proposed to estimate the mean squared prediction error (MSPE) of an empirical best linear unbiased predictor (EBLUP) of a general mixed effect. Different MSPE estimators are compared using a Monte Carlo simulation study.  相似文献   

11.
In this paper, a penalized weighted least squares approach is proposed for small area estimation under the unit level model. The new method not only unifies the traditional empirical best linear unbiased prediction that does not take sampling design into account and the pseudo‐empirical best linear unbiased prediction that incorporates sampling weights but also has the desirable robustness property to model misspecification compared with existing methods. The empirical small area estimator is given, and the corresponding second‐order approximation to mean squared error estimator is derived. Numerical comparisons based on synthetic and real data sets show superior performance of the proposed method to currently available estimators in the literature.  相似文献   

12.
This article presents a semiparametric method for estimating receiver operating characteristic surface under density ratio model. The construction of the proposed method is based on the adjacent-category logit model and the empirical likelihood approach. A bootstrap approach for the VUS estimator inference is presented. In a simulation study, the proposed estimator is compared with the existing parametric and nonparametric estimators in terms of bias, standard error, and mean square error. Finally, a real data example and some discussions on the proposed method are provided.  相似文献   

13.
The weighted likelihood is a generalization of the likelihood designed to borrow strength from similar populations while making minimal assumptions. If the weights are properly chosen, the maximum weighted likelihood estimate may perform better than the maximum likelihood estimate (MLE). In a previous article, the minimum averaged mean squared error (MAMSE) weights are proposed and simulations show that they allow to outperform the MLE in many cases. In this paper, we study the asymptotic properties of the MAMSE weights. In particular, we prove that the MAMSE-weighted mixture of empirical distribution functions converges uniformly to the target distribution and that the maximum weighted likelihood estimate is strongly consistent. A short simulation illustrates the use of bootstrap in this context.  相似文献   

14.
Using survey weights, You & Rao [You and Rao, The Canadian Journal of Statistics 2002; 30, 431–439] proposed a pseudo‐empirical best linear unbiased prediction (pseudo‐EBLUP) estimator of a small area mean under a nested error linear regression model. This estimator borrows strength across areas through a linking model, and makes use of survey weights to ensure design consistency and preserve benchmarking property in the sense that the estimators add up to a reliable direct estimator of the mean of a large area covering the small areas. In this article, a second‐order approximation to the mean squared error (MSE) of the pseudo‐EBLUP estimator of a small area mean is derived. Using this approximation, an estimator of MSE that is nearly unbiased is derived; the MSE estimator of You & Rao [You and Rao, The Canadian Journal of Statistics 2002; 30, 431–439] ignored cross‐product terms in the MSE and hence it is biased. Empirical results on the performance of the proposed MSE estimator are also presented. The Canadian Journal of Statistics 38: 598–608; 2010 © 2010 Statistical Society of Canada  相似文献   

15.
Log-normal linear models are widely used in applications, and many times it is of interest to predict the response variable or to estimate the mean of the response variable at the original scale for a new set of covariate values. In this paper we consider the problem of efficient estimation of the conditional mean of the response variable at the original scale for log-normal linear models. Several existing estimators are reviewed first, including the maximum likelihood (ML) estimator, the restricted ML (REML) estimator, the uniformly minimum variance unbiased (UMVU) estimator, and a bias-corrected REML estimator. We then propose two estimators that minimize the asymptotic mean squared error and the asymptotic bias, respectively. A parametric bootstrap procedure is also described to obtain confidence intervals for the proposed estimators. Both the new estimators and the bootstrap procedure are very easy to implement. Comparisons of the estimators using simulation studies suggest that our estimators perform better than the existing ones, and the bootstrap procedure yields confidence intervals with good coverage properties. A real application of estimating the mean sediment discharge is used to illustrate the methodology.  相似文献   

16.
In this article, the authors consider a semiparametric additive hazards regression model for right‐censored data that allows some censoring indicators to be missing at random. They develop a class of estimating equations and use an inverse probability weighted approach to estimate the regression parameters. Nonparametric smoothing techniques are employed to estimate the probability of non‐missingness and the conditional probability of an uncensored observation. The asymptotic properties of the resulting estimators are derived. Simulation studies show that the proposed estimators perform well. They motivate and illustrate their methods with data from a brain cancer clinical trial. The Canadian Journal of Statistics 38: 333–351; 2010 © 2010 Statistical Society of Canada  相似文献   

17.
ABSTRACT

We derive analytic expressions for the biases, to O(n?1), of the maximum likelihood estimators of the parameters of the generalized Pareto distribution. Using these expressions to bias-correct the estimators in a selective manner is found to be extremely effective in terms of bias reduction, and can also result in a small reduction in relative mean squared error (MSE). In terms of remaining relative bias, the analytic bias-corrected estimators are somewhat less effective than their counterparts obtained by using a parametric bootstrap bias correction. However, the analytic correction out-performs the bootstrap correction in terms of remaining %MSE. It also performs credibly relative to other recently proposed estimators for this distribution. Taking into account the relative computational costs, this leads us to recommend the selective use of the analytic bias adjustment for most practical situations.  相似文献   

18.
The commonly used method of small area estimation (SAE) under a linear mixed model may not be efficient if data contain substantial proportion of zeros than would be expected under standard model assumptions (hereafter zero-inflated data). The authors discuss the SAE for zero-inflated data under a two-part random effects model that account for excess zeros in the data. Empirical results show that proposed method for SAE works well and produces an efficient set of small area estimates. An application to real survey data from the National Sample Survey Office of India demonstrates the satisfactory performance of the method. The authors describe a parametric bootstrap method to estimate the mean squared error (MSE) of the proposed estimator of small areas. The bootstrap estimates of the MSE are compared to the true MSE in simulation study.  相似文献   

19.
The authors develop a small area estimation method using a nested error linear regression model and survey weights. In particular, they propose a pseudo‐empirical best linear unbiased prediction (pseudo‐EBLUP) estimator to estimate small area means. This estimator borrows strength across areas through the model and makes use of the survey weights to preserve the design consistency as the area sample size increases. The proposed estimator also has a nice self‐benchmarking property. The authors also obtain an approximation to the model mean squared error (MSE) of the proposed estimator and a nearly unbiased estimator of MSE. Finally, they compare the proposed estimator with the EBLUP estimator and the pseudo‐EBLUP estimator proposed by Prasad & Rao (1999), using data analyzed earlier by Battese, Harter & Fuller (1988).  相似文献   

20.
The process comparing the empirical cumulative distribution function of the sample with a parametric estimate of the cumulative distribution function is known as the empirical process with estimated parameters and has been extensively employed in the literature for goodness‐of‐fit testing. The simplest way to carry out such goodness‐of‐fit tests, especially in a multivariate setting, is to use a parametric bootstrap. Although very easy to implement, the parametric bootstrap can become very computationally expensive as the sample size, the number of parameters, or the dimension of the data increase. An alternative resampling technique based on a fast weighted bootstrap is proposed in this paper, and is studied both theoretically and empirically. The outcome of this work is a generic and computationally efficient multiplier goodness‐of‐fit procedure that can be used as a large‐sample alternative to the parametric bootstrap. In order to approximately determine how large the sample size needs to be for the parametric and weighted bootstraps to have roughly equivalent powers, extensive Monte Carlo experiments are carried out in dimension one, two and three, and for models containing up to nine parameters. The computational gains resulting from the use of the proposed multiplier goodness‐of‐fit procedure are illustrated on trivariate financial data. A by‐product of this work is a fast large‐sample goodness‐of‐fit procedure for the bivariate and trivariate t distribution whose degrees of freedom are fixed. The Canadian Journal of Statistics 40: 480–500; 2012 © 2012 Statistical Society of Canada  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号