首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigate optimal designs for discriminating between exponential regression models of different complexity, which are widely used in the biological sciences; see, e.g., Landaw [1995. Robust sampling designs for compartmental models under large prior eigenvalue uncertainties. Math. Comput. Biomed. Appl. 181–187] or Gibaldi and Perrier [1982. Pharmacokinetics. Marcel Dekker, New York]. We discuss different approaches for the construction of appropriate optimality criteria, and find sharper upper bounds on the number of support points of locally optimal discrimination designs than those given by Caratheodory's Theorem. These results greatly facilitate the numerical construction of optimal designs. Various examples of optimal designs are then presented and compared to different other designs. Moreover, to protect the experiment against misspecifications of the nonlinear model parameters, we adapt the design criteria such that the resulting designs are robust with respect to such misspecifications and, again, provide several examples, which demonstrate the advantages of our approach.  相似文献   

2.
We develop criteria that generate robust designs and use such criteria for the construction of designs that insure against possible misspecifications in logistic regression models. The design criteria we propose are different from the classical in that we do not focus on sampling error alone. Instead we use design criteria that account as well for error due to bias engendered by the model misspecification. Our robust designs optimize the average of a function of the sampling error and bias error over a specified misspecification neighbourhood. Examples of robust designs for logistic models are presented, including a case study implementing the methodologies using beetle mortality data.  相似文献   

3.
In this article two-stage hierarchical Bayesian models are used for the observed occurrences of events in a rectangular region. Two Bayesian variable window scan statistics are introduced to test the null hypothesis that the observed events follow a specified two-stage hierarchical model vs an alternative that indicates a local increase in the average number of observed events in a subregion (clustering). Both procedures are based on a sequence of Bayes factors and their pp-values that have been generated via simulation of posterior samples of the parameters, under the null and alternative hypotheses. The posterior samples of the parameters have been generated by employing Gibbs sampling via introduction of auxiliary variables. Numerical results are presented to evaluate the performance of these variable window scan statistics.  相似文献   

4.
For the Weibull- and Richards-regression model robust designs are determined by maximizing a minimum of D  - or D1D1-efficiencies, taken over a certain range of the non-linear parameters. It is demonstrated that the derived designs yield a satisfactory solution of the optimal design problem for this type of model in the sense that these designs are efficient and robust with respect to misspecification of the unknown parameters. Moreover, the designs can also be used for testing the postulated form of the regression model against a simplified sub-model.  相似文献   

5.
We consider the Bayesian D-optimal design problem for exponential growth models with one, two or three parameters. For the one-parameter model conditions on the shape of the density of the prior distribution and on the range of its support are given guaranteeing that a one-point design is also Bayesian D-optimal within the class of all designs. In the case of two parameters the best two-point designs are determined and for special prior distributions it is proved that these designs are Bayesian D-optimal. Finally, the exponential growth model with three parameters is investigated. The best three-point designs are characterized by a nonlinear equation. The global optimality of these designs cannot be proved analytically and it is demonstrated that these designs are also Bayesian D-optimal within the class of all designs if gamma-distributions are used as prior distributions.  相似文献   

6.
We consider the construction of designs for the extrapolation of a regression response to one point outside of the design space. The response function is an only approximately known function of a specified linear function. As well, we allow for variance heterogeneity. We find minimax designs and corresponding optimal regression weights in the context of the following problems: (P1) for nonlinear least squares estimation with homoscedasticity, determine a design to minimize the maximum value of the mean squared extrapolation error (MSEE), with the maximum being evaluated over the possible departures from the response function; (P2) for nonlinear least squares estimation with heteroscedasticity, determine a design to minimize the maximum value of MSEE, with the maximum being evaluated over both types of departures; (P3) for nonlinear weighted least squares estimation, determine both weights and a design to minimize the maximum MSEE; (P4) choose weights and design points to minimize the maximum MSEE, subject to a side condition of unbiasedness. Solutions to (P1)–(P4) are given in complete generality. Numerical comparisons indicate that our designs and weights perform well in combining robustness and efficiency. Applications to accelerated life testing are highlighted.  相似文献   

7.
This paper considers exponential and rational regression models that are nonlinear in some parameters. Recently, locally D-optimal designs for such models were investigated in [Melas, V. B., 2005. On the functional approach to optimal designs for nonlinear models. J. Statist. Plann. Inference 132, 93–116] based upon a functional approach. In this article a similar method is applied to construct maximin efficient D-optimal designs. This approach allows one to represent the support points of the designs by Taylor series, which gives us the opportunity to construct the designs by hand using tables of the coefficients of the series. Such tables are provided here for models with two nonlinear parameters. Furthermore, the recurrent formulas for constructing the tables for arbitrary numbers of parameters are introduced.  相似文献   

8.
Longitudinal surveys have emerged in recent years as an important data collection tool for population studies where the primary interest is to examine population changes over time at the individual level. Longitudinal data are often analyzed through the generalized estimating equations (GEE) approach. The vast majority of existing literature on the GEE method; however, is developed under non‐survey settings and are inappropriate for data collected through complex sampling designs. In this paper the authors develop a pseudo‐GEE approach for the analysis of survey data. They show that survey weights must and can be appropriately accounted in the GEE method under a joint randomization framework. The consistency of the resulting pseudo‐GEE estimators is established under the proposed framework. Linearization variance estimators are developed for the pseudo‐GEE estimators when the finite population sampling fractions are small or negligible, a scenario often held for large‐scale surveys. Finite sample performances of the proposed estimators are investigated through an extensive simulation study using data from the National Longitudinal Survey of Children and Youth. The results show that the pseudo‐GEE estimators and the linearization variance estimators perform well under several sampling designs and for both continuous and binary responses. The Canadian Journal of Statistics 38: 540–554; 2010 © 2010 Statistical Society of Canada  相似文献   

9.
This paper develops two sampling designs to create artificially stratified samples. These designs use a small set of experimental units to determine their relative ranks without measurement. In each set, the units are ranked by all available observers (rankers), with ties whenever the units cannot be ranked with high confidence. The rankings from all the observers are then combined in a meaningful way to create a single weight measure. This weight measure is used to create judgment strata in both designs. The first design constructs the strata through judgment post‐stratification after the data has been collected. The second design creates the strata before any measurements are made on the experimental units. The paper constructs estimators and confidence intervals, and develops testing procedures for the mean and median of the underlying distribution based on these sampling designs. We show that the proposed sampling designs provide a substantial improvement over their competitor designs in the literature. The Canadian Journal of Statistics 41: 304–324; 2013 © 2013 Statistical Society of Canada  相似文献   

10.
Crossover designs are used for a variety of different applications. While these designs have a number of attractive features, they also induce a number of special problems and concerns. One of these is the possible presence of carryover effects. Even with the use of washout periods, which are for many applications widely accepted as an indispensable component, the effect of a treatment from a previous period may not be completely eliminated. A model that has recently received renewed attention in the literature is the model in which first-order carryover effects are assumed to be proportional to direct treatment effects. Under this model, assuming that the constant of proportionality is known, we identify optimal and efficient designs for the direct effects for different values of the constant of proportionality. We also consider the implication of these results for the case that the constant of proportionality is not known.  相似文献   

11.
12.
The aim of an experiment is often to enable discrimination between competing forms for a response model. We investigate the selection of a continuous design for a non-sequential strategy when there are two competing generalized linear models for a binomial response, with a common link function and the linear predictor of one model nested within that of the other. A new criterion, TETE-optimality, is defined, based on the difference in the deviances from the two models, and comparisons are made with TT-, DsDs- and DD-optimality. Issues are raised through the study of two examples in which designs are assessed using simulation studies of the power to reject the null hypothesis of the smaller model being correct, when the data are generated from the larger model. Parameter estimation for discrimination designs is also discussed and a simple method is investigated of combining designs to form a hybrid design in order to achieve both model discrimination and estimation. This method has a computational advantage over the use of a compound criterion and the similar performance of the designs obtained from the two approaches is illustrated in an example.  相似文献   

13.
For paired comparison experiments involving pairs of multifactor options differing in a specified number of factors the problem of finding optimal designs is considered, when only main effects are to be estimated. It is presumed that the set of factors can be partitioned into two groups such that the number of levels is constant within each group. The optimal designs for this frequently encountered case are also optimal for the corresponding choice experiments under the hypothesis that the parameters in the multinomial logit model are equal to zero.  相似文献   

14.
The use of covariates in block designs is necessary when the covariates cannot be controlled like the blocking factor in the experiment. In this paper, we consider the situation where there is some flexibility for selection in the values of the covariates. The choice of values of the covariates for a given block design attaining minimum variance for estimation of each of the parameters has attracted attention in recent times. Optimum covariate designs in simple set-ups such as completely randomised design (CRD), randomised block design (RBD) and some series of balanced incomplete block design (BIBD) have already been considered. In this paper, optimum covariate designs have been considered for the more complex set-ups of different partially balanced incomplete block (PBIB) designs, which are popular among practitioners. The optimum covariate designs depend much on the methods of construction of the basic PBIB designs. Different combinatorial arrangements and tools such as orthogonal arrays, Hadamard matrices and different kinds of products of matrices viz. Khatri–Rao product, Kronecker product have been conveniently used to construct optimum covariate designs with as many covariates as possible.  相似文献   

15.
In this paper we seek designs and estimators which are optimal in some sense for multivariate linear regression on cubes and simplexes when the true regression function is unknown. More precisely, we assume that the unknown true regression function is the sum of a linear part plus some contamination orthogonal to the set of all linear functions in the L2 norm with respect to Lebesgue measure. The contamination is assumed bounded in absolute value and it is shown that the usual designs for multivariate linear regression on cubes and simplices and the usual least squares estimators minimize the supremum over all possible contaminations of the expected mean square error. Additional results for extrapolation and interpolation, among other things, are discussed. For suitable loss functions optimal designs are found to have support on the extreme points of our design space.  相似文献   

16.
An experimental design is said to be Schur optimal, if it is optimal with respect to the class of all Schur isotonic criteria, which includes Kiefer's criteria of ΦpΦp-optimality, distance optimality criteria and many others. In the paper we formulate an easily verifiable necessary and sufficient condition for Schur optimality in the set of all approximate designs of a linear regression experiment with uncorrelated errors. We also show that several common models admit a Schur optimal design, for example the trigonometric model, the first-degree model on the Euclidean ball, and the Berman's model.  相似文献   

17.
We investigate an optimization problem for mixture experiments. We consider the case when a large number of ingredients are available but mixtures can contain only a few number of ingredients. These conditions are held in experiments for self assembling molecular systems. First, we introduce a concept of uniform coverage design specialized for the situation. Next, we propose to use the stepwise technique for estimating coefficients of third-order Scheffe model which describes a response surface. After that, we propose a method of adding new mixtures for a movement to an extremum region. By this method, additional mixtures of experiments are extremum points of current estimated model and points which lead to more accurate estimation of current model prediction. This methodology is studied numerically for a model constructed from real data.  相似文献   

18.
In the general linear model consider the experimental design problem for the Gauß-Markov estimator or least squares estimator when the observations are correlated. We prove new formulas for the efficiency of an exact design with respect to the D-criterion. For models with intercept term, for example, these formulas are useful to derive better lower bounds for the efficiency than the bounds recently given for an arbitrary linear model. These bounds are applied in examples to symmetrical regular circulants as covariance matrices. A byproduct of the investigations is some insight as to what kinds of designs might retain their optimality or high efficiency (for the uncorrelated homoscedastic case) under correlated observations.  相似文献   

19.
In this paper we present the construction of robust designs for a possibly misspecified generalized linear regression model when the data are censored. The minimax designs and unbiased designs are found for maximum likelihood estimation in the context of both prediction and extrapolation problems. This paper extends preceding work of robust designs for complete data by incorporating censoring and maximum likelihood estimation. It also broadens former work of robust designs for censored data from others by considering both nonlinearity and much more arbitrary uncertainty in the fitted regression response and by dropping all restrictions on the structure of the regressors. Solutions are derived by a nonsmooth optimization technique analytically and given in full generality. A typical example in accelerated life testing is also demonstrated. We also investigate implementation schemes which are utilized to approximate a robust design having a density. Some exact designs are obtained using an optimal implementation scheme.  相似文献   

20.
Optimal designs for a logistic regression model with over-dispersion introduced by a beta-binomial distribution are characterized. Designs are defined by a set of design points and design weights as usual but, in addition, the experimenter must also make a choice of a sub-sampling design specifying the distribution of observations on sample sizes. In an earlier work it has been shown that Ds-optimal sampling designs for estimation of the parameters of the beta-binomial distribution are supported on at most two design points. This admits a simplified approach using single sample sizes. Linear predictor values for Ds-optimal designs using a common sample size are tabulated for different levels of over-dispersion and choice of subsets of parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号