首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
This paper discusses asymptotic expansions for the null distributions of some test statistics for profile analysis under non-normality. It is known that the null distributions of these statistics converge to chi-square distribution under normality [Siotani, M., 1956. On the distributions of the Hotelling's T2T2-statistics. Ann. Inst. Statist. Math. Tokyo 8, 1–14; Siotani, M., 1971. An asymptotic expansion of the non-null distributions of Hotelling's generalized T2T2-statistic. Ann. Math. Statist. 42, 560–571]. We extend this result by obtaining asymptotic expansions under general distributions. Moreover, the effect of non-normality is also considered. In order to obtain all the results, we make use of matrix manipulations such as direct products and symmetric tensor, rather than usual elementwise tensor notation.  相似文献   

4.
5.
The coefficient of determination, a.k.a. R2, is well-defined in linear regression models, and measures the proportion of variation in the dependent variable explained by the predictors included in the model. To extend it for generalized linear models, we use the variance function to define the total variation of the dependent variable, as well as the remaining variation of the dependent variable after modeling the predictive effects of the independent variables. Unlike other definitions that demand complete specification of the likelihood function, our definition of R2 only needs to know the mean and variance functions, so applicable to more general quasi-models. It is consistent with the classical measure of uncertainty using variance, and reduces to the classical definition of the coefficient of determination when linear regression models are considered.  相似文献   

6.
In this paper, we consider the asymptotic distributions of functionals of the sample covariance matrix and the sample mean vector obtained under the assumption that the matrix of observations has a matrix‐variate location mixture of normal distributions. The central limit theorem is derived for the product of the sample covariance matrix and the sample mean vector. Moreover, we consider the product of the inverse sample covariance matrix and the mean vector for which the central limit theorem is established as well. All results are obtained under the large‐dimensional asymptotic regime, where the dimension p and the sample size n approach infinity such that p/nc ∈ [0, + ) when the sample covariance matrix does not need to be invertible and p/nc ∈ [0,1) otherwise.  相似文献   

7.
Abstract

In a 2-step monotone missing dataset drawn from a multivariate normal population, T2-type test statistic (similar to Hotelling’s T2 test statistic) and likelihood ratio (LR) are often used for the test for a mean vector. In complete data, Hotelling’s T2 test and LR test are equivalent, however T2-type test and LR test are not equivalent in the 2-step monotone missing dataset. Then we interest which statistic is reasonable with relation to power. In this paper, we derive asymptotic power function of both statistics under a local alternative and obtain an explicit form for difference in asymptotic power function. Furthermore, under several parameter settings, we compare LR and T2-type test numerically by using difference in empirical power and in asymptotic power function. Summarizing obtained results, we recommend applying LR test for testing a mean vector.  相似文献   

8.
9.
The authors consider a double robust estimation of the regression parameter defined by an estimating equation in a surrogate outcome set‐up. Under a correct specification of the propensity score, the proposed estimator has smallest trace of asymptotic covariance matrix whether the “working outcome regression model” involved is specified correct or not, and it is particularly meaningful when it is incorrectly specified. Simulations are conducted to examine the finite sample performance of the proposed procedure. Data on obesity and high blood pressure are analyzed for illustration. The Canadian Journal of Statistics 38: 633–646; 2010 © 2010 Statistical Society of Canada  相似文献   

10.
The objective of this paper is to construct covariance matrix functions whose entries are compactly supported, and to use them as building blocks to formulate other covariance matrix functions for second-order vector stochastic processes or random fields. In terms of the scale mixture of compactly supported covariance matrix functions, we derive a class of second-order vector stochastic processes on the real line whose direct and cross covariance functions are of Pólya type. Then some second-order vector random fields in RdRd whose direct and cross covariance functions are compactly supported are constructed by using a convolution approach and a mixture approach.  相似文献   

11.
We study the problem of approximating a stochastic process Y = {Y(t: tT} with known and continuous covariance function R on the basis of finitely many observations Y(t 1,), …, Y(t n ). Dependent on the knowledge about the mean function, we use different approximations ? and measure their performance by the corresponding maximum mean squared error sub t∈T E(Y(t) ? ?(t))2. For a compact T ? ? p we prove sufficient conditions for the existence of optimal designs. For the class of covariance functions on T 2 = [0, 1]2 which satisfy generalized Sacks/Ylvisaker regularity conditions of order zero or are of product type, we construct sequences of designs for which the proposed approximations perform asymptotically optimal.  相似文献   

12.
The unique minimum variance of unbiased estimator is obtained for analysis functions of the mean of a multivariate normal distribution with either unknown covariance matrix or with covariance matrix of the form σ2v where σ2 is unknown.  相似文献   

13.
The class of joint mean‐covariance models uses the modified Cholesky decomposition of the within subject covariance matrix in order to arrive to an unconstrained, statistically meaningful reparameterisation. The new parameterisation of the covariance matrix has two sets of parameters that separately describe the variances and correlations. Thus, with the mean or regression parameters, these models have three sets of distinct parameters. In order to alleviate the problem of inefficient estimation and downward bias in the variance estimates, inherent in the maximum likelihood estimation procedure, the usual REML estimation procedure adjusts for the degrees of freedom lost due to the estimation of the mean parameters. Because of the parameterisation of the joint mean covariance models, it is possible to adapt the usual REML procedure in order to estimate the variance (correlation) parameters by taking into account the degrees of freedom lost by the estimation of both the mean and correlation (variance) parameters. To this end, here we propose adjustments to the estimation procedures based on the modified and adjusted profile likelihoods. The methods are illustrated by an application to a real data set and simulation studies. The Canadian Journal of Statistics 40: 225–242; 2012 © 2012 Statistical Society of Canada  相似文献   

14.
Linear mixed effects model (LMEM) is efficient in modeling repeated measures longitudinal data. However, little research has been done in developing goodness-of-fit measures that can evaluate the models, particularly those that can be interpreted in an absolute sense without referencing a null model. This paper proposes three coefficient of determination (R 2) as goodness-of-fit measures for LMEM with repeated measures longitudinal data. Theorems are presented describing the properties of R 2 and relationships between the R 2 statistics. A simulation study was conducted to evaluate and compare the R 2 along with other criteria from literature. Finally, we applied the proposed R 2 to a real virologic response data of an HIV-patient cohort. We conclude that our proposed R 2 statistics have more advantages than other goodness-of-fit measures in the literature, in terms of robustness to sample size, intuitive interpretation, well-defined range, and unnecessary to determine a null model.  相似文献   

15.
In this article we study the problem of classification of three-level multivariate data, where multiple qq-variate observations are measured on uu-sites and over pp-time points, under the assumption of multivariate normality. The new classification rules with certain structured and unstructured mean vectors and covariance structures are very efficient in small sample scenario, when the number of observations is not adequate to estimate the unknown variance–covariance matrix. These classification rules successfully model the correlation structure on successive repeated measurements over time. Computation algorithms for maximum likelihood estimates of the unknown population parameters are presented. Simulation results show that the introduction of sites in the classification rules improves their performance over the existing classification rules without the sites.  相似文献   

16.
17.
In this paper we consider a sequence of independent continuous symmetric random variables X1, X2, …, with heavy-tailed distributions. Then we focus on limiting behavior of randomly weighted averages Sn = R(n)1X1 + ??? + R(n)nXn, where the random weights R(n)1, …, Rn(n) which are independent of X1, X2, …, Xn, are the cuts of (0, 1) by the n ? 1 order statistics from a uniform distribution. Indeed we prove that cnSn converges in distribution to a symmetric α-stable random variable with cn = n1 ? 1/α1/α(α + 1).  相似文献   

18.
Consider developing a regression model in a context where substantive theory is weak. To focus on an extreme case, suppose that in fact there is no relationship between the dependent variable and the explanatory variables. Even so, if there are many explanatory variables, the R 2 will be high. If explanatory variables with small t statistics are dropped and the equation refitted, the R 2 will stay high and the overall F will become highly significant. This is demonstrated by simulation and by asymptotic calculation.  相似文献   

19.
Liu and Singh (1993, 2006) introduced a depth‐based d‐variate extension of the nonparametric two sample scale test of Siegel and Tukey (1960). Liu and Singh (2006) generalized this depth‐based test for scale homogeneity of k ≥ 2 multivariate populations. Motivated by the work of Gastwirth (1965), we propose k sample percentile modifications of Liu and Singh's proposals. The test statistic is shown to be asymptotically normal when k = 2, and compares favorably with Liu and Singh (2006) if the underlying distributions are either symmetric with light tails or asymmetric. In the case of skewed distributions considered in this paper the power of the proposed tests can attain twice the power of the Liu‐Singh test for d ≥ 1. Finally, in the k‐sample case, it is shown that the asymptotic distribution of the proposed percentile modified Kruskal‐Wallis type test is χ2 with k ? 1 degrees of freedom. Power properties of this k‐sample test are similar to those for the proposed two sample one. The Canadian Journal of Statistics 39: 356–369; 2011 © 2011 Statistical Society of Canada  相似文献   

20.
Let X n = (x i j ) be a k ×n data matrix with complex‐valued, independent and standardized entries satisfying a Lindeberg‐type moment condition. We consider simultaneously R sample covariance matrices , where the Q r 's are non‐random real matrices with common dimensions p ×k (k p ). Assuming that both the dimension p and the sample size n grow to infinity, the limiting distributions of the eigenvalues of the matrices { B n r } are identified, and as the main result of the paper, we establish a joint central limit theorem (CLT) for linear spectral statistics of the R matrices { B n r }. Next, this new CLT is applied to the problem of testing a high‐dimensional white noise in time series modelling. In experiments, the derived test has a controlled size and is significantly faster than the classical permutation test, although it does have lower power. This application highlights the necessity of such joint CLT in the presence of several dependent sample covariance matrices. In contrast, all the existing works on CLT for linear spectral statistics of large sample covariance matrices deal with a single sample covariance matrix (R = 1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号