首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The Waste Isolation Pilot Plant (WIPP) is a geological repository for disposal of U.S. defense transuranic radioactive waste. Built and operated by the U.S. Department of Energy (DOE), it is located in the Permian age salt beds in southeastern New Mexico at a depth of 655 m. Performance assessment for the repository's compliance with the 10,000-year containment standards was completed in 1996 and the U.S. Environmental Protection Agency (EPA) certified in 1998 that the repository meets compliance with the EPA standards 40 CFR 191 and 40 CFR 194. The Environmental Evaluation Group (EEG) review of the DOE's application for certification identified a number of issues. These related to the scenarios, conceptual models, and values of the input parameters used in the calculations. It is expected that these issues will be addressed and resolved during the first 5-year recertification process that began with the first receipt of waste at WIPP on March 26, 1999, and scheduled to be completed in March 2004.  相似文献   

2.
The conceptual and computational structure of a performance assessment (PA) for the Waste Isolation Pilot Plant (WIPP) is described. Important parts of this structure are (1) maintenance of a separation between stochastic (i.e., aleatory) and subjective (i.e., epistemic) uncertainty, with stochastic uncertainty arising from the many possible disruptions that could occur over the 10,000-year regulatory period that applies to the WIPP, and subjective uncertainty arising from the imprecision with which many of the quantities required in the analysis are known, (2) use of Latin hypercube sampling to incorporate the effects of subjective uncertainty, (3) use of Monte Carlo (i.e., random) sampling to incorporate the effects of stochastic uncertainty, and (4) efficient use of the necessarily limited number of mechanistic calculations that can be performed to support the analysis. The WIPP is under development by the U.S. Department of Energy (DOE) for the geologic (i.e., deep underground) disposal of transuranic (TRU) waste, with the indicated PA supporting a Compliance Certification Application (CCA) by the DOE to the U.S. Environmental Protection Agency (EPA) in October 1996 for the necessary certifications for the WIPP to begin operation. The EPA certified the WIPP for the disposal of TRU waste in May 1998, with the result that the WIPP will be the first operational facility in the United States for the geologic disposal of radioactive waste.  相似文献   

3.
The purpose of this paper is to develop and test a facility location model for the siting of a nuclear fuel waste disposal facility in Canada. The model is based on successful Canadian siting processes related to hazardous waste and low level radioactive waste facilities, as well as attributes of facility siting found in the literature. The proposed model was presented to a sample of participants in the federal environmental assessment review of the technical feasibility of the Canadian Nuclear Fuel Waste Disposal Concept (CNFWDC) held throughout Canada in 1990. Results demonstrate that despite the fact that over half of the survey respondents did not support the CNFWDC during the public hearings, the majority favorably rated the proposed facility location model. Components of the model that were tested included siting criteria and goals, decision-making groups, and siting safeguards. On the basis of these results, it is concluded that the siting of a nuclear fuel waste disposal facility must make the decentralization of decision-making authority to local communities and governments a priority.  相似文献   

4.
Analysis of Local Acceptance of a Radioactive Waste Disposal Facility   总被引:1,自引:0,他引:1  
Like many other countries in the world, Korea has struggled to site a facility for radioactive waste for almost 30 years because of the strong opposition from local residents. Finally, in 2005, Gyeongju was established as the first Korean site for a radioactive waste facility. The objectives of this research are to verify Gyeongju citizens' average level of risk perception of a radioactive waste disposal facility as compared to other risks, and to explore the best model for predicting respondents' acceptance level using variables related to cost-benefit, risk perception, and political process. For this purpose, a survey is conducted among Gyeongju residents, the results of which are as follows. First, the local residents' risk perception of an accident in a radioactive waste disposal facility is ranked seventh among a total of 13 risks, which implies that nuclear-related risk is not perceived very highly by Gyeongju residents; however, its characteristics are still somewhat negative. Second, the comparative regression analyses show that the cost-benefit and political process models are more suitable for explaining the respondents' level of acceptance than the risk perception model. This may be the result of the current economic depression in Gyeongju, residents' familiarity with the nuclear industry, or cultural characteristics of risk tolerance.  相似文献   

5.
No public policy issue has been as difficult as high-level nuclear waste. Debates continue regarding Yucca Mountain as a disposal site, and—more generally—the appropriateness of geologic disposal and the need to act quickly. Previous research has focused on possible social, political, and economic consequences of a facility in Nevada. Impacts have been predicted to be potentially large and to emanate mainly from stigmatization of the region due to increased perceptions of risk. Analogous impacts from leaving waste at power plants have been either ignored or assumed to be negligible. This paper presents survey results on attitudes of residents in three counties where nuclear waste is currently stored. Topics include perceived risk, knowledge of nuclear waste and radiation, and impacts on jobs, tourism, and housing values from leaving waste on site. Results are similar to what has been reported for Nevada; the public is concerned about possible adverse effects from on-site storage of waste.  相似文献   

6.
This paper presents the history of the Environmental Restoration Priority System (ERPS), a decision aid developed by the U.S. Department of Energy (DOE) to help determine how to allocate funds for cleaning up hazardous waste sites. Although praised in technical peer review, the system was strongly criticized by stakeholders external to the DOE. Ultimately, and in the midst of a National Academy of Sciences review, DOE shelved the system. The rise and fall of ERPS provides useful lessons for analysts hoping to improve risk management in the public sector.  相似文献   

7.
Incentives Policies to Site Hazardous Waste Facilities   总被引:1,自引:0,他引:1  
This paper addresses the use of mitigation and compensation as incentives policies to stimulate agreement between parties interested in siting a hazardous waste facility and potential host communities. We develop a model of facility siting that distinguishes five key factors which influence the acceptability of a proposed facility when considered in relation to status quo conditions. This model then is used to examine the effectiveness of different incentives policies with regard to (a) mitigating the perceived risks and (b) compensating the adverse impacts of a hazardous waste facility.  相似文献   

8.
The U.S. Congress has designated Yucca Mountain, Nevada as the only potential site to be studied for the nation's first high-level nuclear waste repository. People in Nevada strongly oppose the program, managed by the U.S. Department of Energy. Survey research shows that the public believes there are great risks from a repository program, in contrast to a majority of scientists who feel the risks are acceptably small. Delays in the repository program resulting in part from public opposition in Nevada have concerned the nuclear power industry, which collects the fees for the federal repository program and believes it needs the repository as a final disposal facility for its high-level nuclear wastes. To assist the repository program, the American Nuclear Energy Council (ANEC), an industry group, sponsored a massive advertising campaign in Nevada. The campaign attempted to assure people that the risks of a repository were small and that the repository studies should proceed. The campaign failed because its managers misunderstood the issues underlying the controversy, attempted a covert manipulation of public opinion that was revealed, and most importantly, lacked the public trust that was necessary to communicate credibly about the risks of a nuclear waste facility.  相似文献   

9.
The risk of medical waste pollution and huge demand of daily medical waste disposal pose great difficulties to medical waste management. Establishing medical waste disposal centers (MWDCs) is considered one of the ways to reduce the environmental and public risk of medical waste pollution. However, how to serve the medical waste disposal demand in optimal MWDCs’ locations is a key challenge due to the complexity of the whole system and relationships among stakeholders. This article develops a soft-path solution for reducing risks as well as mitigating the related costs by optimizing the MWDC location-allocation problem. A risk mitigation-oriented bilevel equilibrium optimization model is developed for modeling the Stackelberg game behavior between the local government and the medical institutions. The objectives of the local government are minimizing the total risk of loss, the subsidy costs, and the investment cost of building the MWDCs, while minimizing the disposal and transportation costs are the objectives at the medical institution level. Fuzzy random variables are introduced by combining insufficient historical data with expert knowledge via consulting surveys to describe the coexisting uncertainties in the data. To solve the model, a hybrid approach combined with the interactive fuzzy programming technique and an Entropy-Boltzmann selection-based genetic algorithm are designed and tested. The Chengdu Medical Waste Disposal Centers Planning Project is used as a practical application. The results show that it is possible to achieve a balanced market with higher economic efficiency and significantly reduced risk through an appropriate principle of interactive actions between the bilevel stakeholders.  相似文献   

10.
11.
Model uncertainty is a primary source of uncertainty in the assessment of the performance of repositories for the disposal of nuclear wastes, due to the complexity of the system and the large spatial and temporal scales involved. This work considers multiple assumptions on the system behavior and corresponding alternative plausible modeling hypotheses. To characterize the uncertainty in the correctness of the different hypotheses, the opinions of different experts are treated probabilistically or, in alternative, by the belief and plausibility functions of the Dempster‐Shafer theory. A comparison is made with reference to a flow model for the evaluation of the hydraulic head distributions present at a radioactive waste repository site. Three experts are assumed available for the evaluation of the uncertainties associated with the hydrogeological properties of the repository and the groundwater flow mechanisms.  相似文献   

12.
As part of its preparation to review a potential license application from the U.S. Department of Energy (DOE), the U.S. Nuclear Regulatory Commission (NRC) is examining the performance of the proposed Yucca Mountain nuclear waste repository. In this regard, we evaluated postclosure repository performance using Monte Carlo analyses with an NRC-developed system model that has 950 input parameters, of which 330 are sampled to represent system uncertainties. The quantitative compliance criterion for dose was established by NRC to protect inhabitants who might be exposed to any releases from the repository. The NRC criterion limits the peak-of-the-mean dose, which in our analysis is estimated by averaging the potential exposure at any instant in time for all Monte Carlo realizations, and then determining the maximum value of the mean curve within 10000 years, the compliance period. This procedure contrasts in important ways with a more common measure of risk based on the mean of the ensemble of peaks from each Monte Carlo realization. The NRC chose the former (peak-of-the-mean) because it more correctly represents the risk to an exposed individual. Procedures for calculating risk in the expected case of slow repository degradation differ from those for low-probability cases of disruption by external forces such as volcanism. We also explored the possibility of risk dilution (i.e., lower calculated risk) that could result from arbitrarily defining wide probability distributions for certain parameters. Finally, our sensitivity analyses to identify influential parameters used two approaches: (1). the ensemble of doses from each Monte Carlo realization at the time of the peak risk (i.e., peak-of-the-mean) and (2). the ensemble of peak doses calculated from each realization within 10000 years. The latter measure appears to have more discriminatory power than the former for many parameters (based on the greater magnitude of the sensitivity coefficient), but can yield different rankings, especially for parameters that influence the timing of releases.  相似文献   

13.
The U.S. Nuclear Regulatory Commission (NRC) staff has developed a performance assessment capability to address three programmatic areas in nuclear waste management: high-level waste, low-level waste, and decommissioning of licensed facilities (license termination). The NRC capability consists of: (1) methodologies for performance assessment; (2) models and computer codes for estimating system performance; (3) regulatory guidance in various forms, such as regulations, Branch Technical Positions, and Standard Review Plans; and (4) a technical staff experienced in executing and evaluating performance assessments for a variety of waste systems. Although the tools and techniques are refined for each programmatic area, general approaches and similar issues are encountered in all areas.  相似文献   

14.
Deregulation, with concurrent pressure on electricity utilities, has fundamentally changed the once-"closed" radioactive waste management system controlled by the so-called "nuclear establishment." Advocacy coalitions may change-who knows in which direction-but policy learning may also take place. This article presents a framework to evaluate the management options for a specified concept of "sustainability." When weighing the different objectives in view of the long-lasting potential danger of radiotoxic substances, the overall goal of a sound waste management system is to demonstrate safety. The first-priority objective of a disposal system, therefore, is its stability so that it can comply with the protection goal, that is, the long-term protection of humans and the environment from ionizing radiation. The complementary objective is flexibility, defined here as intervention potential. Because trade-offs within the "sustainability triangle" of ecology, economy, and society are unavoidable, the concept of "integral robustness"-both technical and societal-is introduced into radioactive waste management. A system is robust if it is not sensitive to significant parameter changes. In the present case, it has to have a conservative, passively stable design with built-in control and intervention mechanisms. With regard to technical implementation, a concept called "monitored long-term geological disposal" is presented. Such an "extended" final disposal concept emphasizes technical robustness, recognizes evaluation demands (for a potential break-off of a project), and enhances process-based transparency. This open approach admittedly sets high challenges with regard to technicalities as well as the institutional setting and the management process. It requires "mutual learning" by and from all stakeholders to achieve a truly sustainable radioactive waste management system.  相似文献   

15.
Many empirical environmental equity analyses have attempted to determine if hazardous waste treatment, storage, or disposal facilities (TSDFs) are in disproportionately minority or low-income areas. These prior analyses did not explain the extent of the risks posed by TSDFs, nor did they weight the distribution of those risks by the individual characteristics of the TSDFs. This study evaluated the risks posed by TSDFs in general and then examined whether any such risks were distributed inequitably when each TSDF was weighted by the amount of hazardous waste that it managed. Based on an assessment of the nature of the hazardous wastes that TSDFs manage, the possible exposure paths to risk from TSDFs, the laws designed to minimize the risks that TSDFs pose, and TSDFs' safety records, the attention devoted to TSDFs by environmental equity researchers is greatly exaggerated. Furthermore, based on this study's analyses, there was no pattern of the TSDFs or the risks that they posed being inequitably concentrated in disproportionately minority or low-income areas. Most of the TSDFs and the hazardous waste that they manage are in areas that are either unpopulated or have fewer minority or low-income people than the national average. There are, however, some TSDFs that are in highly populated, heavily minority or low-income areas, which results in such people being more likely overall to be in close proximity to these facilities.  相似文献   

16.
In their regulations, the U.S. Environmental Protection Agency and the U.S. Nuclear Regulatory Commission permit the omission of features, events, or processes with probabilities of <10(-4) in 10(4) yr (e.g., a constant frequency of <10(-8) per yr) in assessments of the performance of radioactive waste disposal systems. Igneous intrusion (or "volcanism") of a geologic repository at Yucca Mountain for radioactive waste is one disruptive event that has a probability with a range of uncertainty that straddles this regulatory criterion and is considered directly in performance assessment calculations. A self-sustained nuclear chain reaction (or "criticality") is another potentially disruptive event to consider, although it was never found to be important when evaluating the efficacy of radioactive waste disposal since the early 1970s. The thesis of this article is that the consideration of the joint event--volcanism and criticality--occurring in any 10,000-year period following closure can be eliminated from performance calculations at Yucca Mountain. The probability of the joint event must be less than the fairly well-accepted but low probability of volcanism. Furthermore, volcanism does not "remove" or "fail" existing hydrologic or geochemical constraints at Yucca Mountain that tend to prevent concentration of fissile material. Prior to general corrosion failure of waste packages, the mean release of fissile mass caused by a low-probability, igneous intrusive event is so small that the probability of a critical event is remote, even for highly enriched spent nuclear fuel owned by the U.S. Department of Energy. After widespread failure of packages occurs, the probability of the joint event is less than the probability of criticality because of the very small influence of volcanism on the mean fissile mass release. Hence, volcanism plays an insignificant role in inducing criticality over any 10(4)-yr period. We also argue that the Oklo reactors serve as a natural analogue and provide a rough bound on probability of criticality given favorable hydrologic or geochemical conditions on the scale of the repository that is less than 0.10. Because the product of this bound with the probability of volcanism represents the probability of the joint event and the product is less than 10(-4) in 10(4) yr, consideration of the joint event can be eliminated from performance calculations.  相似文献   

17.
In this paper the problem of high-level nuclear waste disposal is viewed as a five-stage, cascaded decision problem. The first four of these decisions having essentially been made, the work of recent years has been focused on the fifth stage, which concerns specifics of the repository design. The probabilistic performance assessment (PPA) work is viewed as the outcome prediction for this stage, and the site characterization work as the information gathering option. This brief examination of the proposed Yucca Mountain repository through a decision analysis framework resulted in three conclusions: (1) A decision theory approach to the process of selecting and characterizing Yucca Mountain would enhance public understanding of the issues and solutions to high-level waste management; (2) engineered systems are an attractive alternative to offset uncertainties in the containment capability of the natural setting and should receive greater emphasis in the design of the repository; and (3) a strategy of waste management should be adopted, as opposed to waste disposal, as it allows for incremental confirmation and confidence building of a permanent solution to the high-level waste problem.  相似文献   

18.
The U.S. Department of Energy has selected three sites, from five nominated, to characterize for a nuclear repository to permanently dispose of nuclear waste. This decision was made without the benefit of an analysis of this "portfolio" problem. This paper analyzes different portfolios of three sites for simultaneous characterization and strategies for sequential characterization. Characterization of each site, which involves significant subsurface excavation, is now estimated to cost $1 billion. Mainly because of the high characterization costs, sequential characterization strategies are identified which are the equivalent of $1.7-2.0 billion less expensive than the selected DOE simultaneous characterization of the three sites. If three sites are simultaneously characterized, one portfolio is estimated to be the equivalent of $100-400 million better than the selected DOE portfolio. Because of these potential savings and several other complicating factors that may influence the relative desirability of characterization strategies, a thorough analysis of characterization strategies that addresses the likelihood of finding disqualifying conditions during site characterization, uncertainties, and dependencies in forecast site repository costs, preclosure and postclosure health and safety impacts, potential delays of both sequential and simultaneous characterization strategies, and the environmental, socioeconomic, and health and safety impacts of characterization activities is recommended.  相似文献   

19.
The disposal of nuclear waste involves extensive time scales. Technical experts consider up to 1 million years for the disposal of spent fuel and high‐level waste in their safety assessment. Yet nuclear waste is not only a technical but also a so‐called sociotechnical problem and, therefore, requires interdisciplinary collaboration between technical, natural, social sciences, and the humanities in its management. Given that these disciplines differ in their language, epistemics, and interests, such collaboration might be problematic. Based on evidence from cognitive psychology, we suggest that, in particular, a concept like time is presumably critical and can be understood differently. This study explores how different scientific disciplines understand extensive time scales in general and then focuses on nuclear waste. Eighteen qualitative exploratory interviews were conducted with experts for time‐related phenomena of different disciplines, among them experts working in nuclear waste management. Analyses revealed two distinct conceptions of time corresponding to idiographic and nomothetic research approaches: scientists from the humanities and social sciences tend to have a more open, undetermined conception of time, whereas natural scientists tend to focus on a more determined conception that includes some undetermined aspects. Our analyses lead to reflections on potential difficulties for interdisciplinary teams in nuclear waste management. We focus on the understanding of the safety assessment, on potential implications for communication between experts from different disciplines (e.g., between experts from the humanities and engineering for risk assessment and risk communication), and we reflect on the roles of different disciplines in nuclear waste management.  相似文献   

20.
废弃物处理设施的选址和运营是公众参与度较高的决策领域。负效应测度既是这类设施选址优化的焦点和难点,也是设施运营后负效应评价和治理的关键。根据风向、风速和其他气象资料设置典型情景;对高斯烟羽模型进行改进,建立基于情景的多点源、多污染气体种类的受影响点气体污染计量模型;开发了由污染气体浓度、气体毒害系数和恶臭因子决定的负效应测度函数;结合情景持续时间,建立较长时期内综合负效应测度模型。通过算例验证模型的效果并提出负效应治理策略。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号