首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many of the popular nonlinear time series models require a priori the choice of parametric functions which are assumed to be appropriate in specific applications. This approach is mainly used in financial applications, when sufficient knowledge is available about the nonlinear structure between the covariates and the response. One principal strategy to investigate a broader class on nonlinear time series is the Nonlinear Additive AutoRegressive (NAAR) model. The NAAR model estimates the lags of a time series as flexible functions in order to detect non-monotone relationships between current and past observations. We consider linear and additive models for identifying nonlinear relationships. A componentwise boosting algorithm is applied for simultaneous model fitting, variable selection, and model choice. Thus, with the application of boosting for fitting potentially nonlinear models we address the major issues in time series modelling: lag selection and nonlinearity. By means of simulation we compare boosting to alternative nonparametric methods. Boosting shows a strong overall performance in terms of precise estimations of highly nonlinear lag functions. The forecasting potential of boosting is examined on the German industrial production (IP); to improve the model’s forecasting quality we include additional exogenous variables. Thus we address the second major aspect in this paper which concerns the issue of high dimensionality in models. Allowing additional inputs in the model extends the NAAR model to a broader class of models, namely the NAARX model. We show that boosting can cope with large models which have many covariates compared to the number of observations.  相似文献   

2.
We present a new algorithm for boosting generalized additive models for location, scale and shape (GAMLSS) that allows to incorporate stability selection, an increasingly popular way to obtain stable sets of covariates while controlling the per-family error rate. The model is fitted repeatedly to subsampled data, and variables with high selection frequencies are extracted. To apply stability selection to boosted GAMLSS, we develop a new “noncyclical” fitting algorithm that incorporates an additional selection step of the best-fitting distribution parameter in each iteration. This new algorithm has the additional advantage that optimizing the tuning parameters of boosting is reduced from a multi-dimensional to a one-dimensional problem with vastly decreased complexity. The performance of the novel algorithm is evaluated in an extensive simulation study. We apply this new algorithm to a study to estimate abundance of common eider in Massachusetts, USA, featuring excess zeros, overdispersion, nonlinearity and spatiotemporal structures. Eider abundance is estimated via boosted GAMLSS, allowing both mean and overdispersion to be regressed on covariates. Stability selection is used to obtain a sparse set of stable predictors.  相似文献   

3.
The generalized additive model is a well established and strong tool that allows modelling smooth effects of predictors on the response. However, if the link function, which is typically chosen as the canonical link, is misspecified, estimates can be biased. A procedure is proposed that simultaneously estimates the form of the link function and the unknown form of the predictor functions including selection of predictors. The procedure is based on boosting methodology, which obtains estimates by using a sequence of weak learners. It strongly dominates fitting procedures that are unable to modify a given link function if the true link function deviates from the fixed function. The performance of the procedure is shown in simulation studies and illustrated by real world examples.  相似文献   

4.
A fully nonparametric model may not perform well or when the researcher wants to use a parametric model but the functional form with respect to a subset of the regressors or the density of the errors is not known. This becomes even more challenging when the data contain gross outliers or unusual observations. However, in practice the true covariates are not known in advance, nor is the smoothness of the functional form. A robust model selection approach through which we can choose the relevant covariates components and estimate the smoothing function may represent an appealing tool to the solution. A weighted signed-rank estimation and variable selection under the adaptive lasso for semi-parametric partial additive models is considered in this paper. B-spline is used to estimate the unknown additive nonparametric function. It is shown that despite using B-spline to estimate the unknown additive nonparametric function, the proposed estimator has an oracle property. The robustness of the weighted signed-rank approach for data with heavy-tail, contaminated errors, and data containing high-leverage points are validated via finite sample simulations. A practical application to an economic study is provided using an updated Canadian household gasoline consumption data.  相似文献   

5.
The article studies a time-varying coefficient time series model in which some of the covariates are measured with additive errors. In order to overcome the bias of estimator of the coefficient functions when measurement errors are ignored, we propose a modified least squares estimator based on wavelet procedures. The advantage of the wavelet method is to avoid the restrictive smoothness requirement for varying-coefficient functions of the traditional smoothing approaches, such as kernel and local polynomial methods. The asymptotic properties of the proposed wavelet estimators are established under the α-mixing conditions and without specifying the error distribution. These results can be used to make asymptotically valid statistical inference.  相似文献   

6.
We propose a new criterion for model selection in prediction problems. The covariance inflation criterion adjusts the training error by the average covariance of the predictions and responses, when the prediction rule is applied to permuted versions of the data set. This criterion can be applied to general prediction problems (e.g. regression or classification) and to general prediction rules (e.g. stepwise regression, tree-based models and neural nets). As a by-product we obtain a measure of the effective number of parameters used by an adaptive procedure. We relate the covariance inflation criterion to other model selection procedures and illustrate its use in some regression and classification problems. We also revisit the conditional bootstrap approach to model selection.  相似文献   

7.
Abstract. Similar to variable selection in the linear model, selecting significant components in the additive model is of great interest. However, such components are unknown, unobservable functions of independent variables. Some approximation is needed. We suggest a combination of penalized regression spline approximation and group variable selection, called the group‐bridge‐type spline method (GBSM), to handle this component selection problem with a diverging number of correlated variables in each group. The proposed method can select significant components and estimate non‐parametric additive function components simultaneously. To make the GBSM stable in computation and adaptive to the level of smoothness of the component functions, weighted power spline bases and projected weighted power spline bases are proposed. Their performance is examined by simulation studies. The proposed method is extended to a partial linear regression model analysis with real data, and gives reliable results.  相似文献   

8.
Generalized linear mixed models are a widely used tool for modeling longitudinal data. However, their use is typically restricted to few covariates, because the presence of many predictors yields unstable estimates. The presented approach to the fitting of generalized linear mixed models includes an L 1-penalty term that enforces variable selection and shrinkage simultaneously. A gradient ascent algorithm is proposed that allows to maximize the penalized log-likelihood yielding models with reduced complexity. In contrast to common procedures it can be used in high-dimensional settings where a large number of potentially influential explanatory variables is available. The method is investigated in simulation studies and illustrated by use of real data sets.  相似文献   

9.
Case-cohort designs are commonly used in large epidemiological studies to reduce the cost associated with covariate measurement. In many such studies the number of covariates is very large. An efficient variable selection method is needed for case-cohort studies where the covariates are only observed in a subset of the sample. Current literature on this topic has been focused on the proportional hazards model. However, in many studies the additive hazards model is preferred over the proportional hazards model either because the proportional hazards assumption is violated or the additive hazards model provides more relevent information to the research question. Motivated by one such study, the Atherosclerosis Risk in Communities (ARIC) study, we investigate the properties of a regularized variable selection procedure in stratified case-cohort design under an additive hazards model with a diverging number of parameters. We establish the consistency and asymptotic normality of the penalized estimator and prove its oracle property. Simulation studies are conducted to assess the finite sample performance of the proposed method with a modified cross-validation tuning parameter selection methods. We apply the variable selection procedure to the ARIC study to demonstrate its practical use.  相似文献   

10.
Graphs and networks are common ways of depicting information. In biology, many different biological processes are represented by graphs, such as regulatory networks, metabolic pathways and protein-protein interaction networks. This kind of a priori use of graphs is a useful supplement to the standard numerical data such as microarray gene expression data. In this paper, we consider the problem of regression analysis and variable selection when the covariates are linked on a graph. We study a graph-constrained regularization procedure and its theoretical properties for regression analysis to take into account the neighborhood information of the variables measured on a graph, where a smoothness penalty on the coefficients is defined as a quadratic form of the Laplacian matrix associated with the graph. We establish estimation and model selection consistency results and provide estimation bounds for both fixed and diverging numbers of parameters in regression models. We demonstrate by simulations and a real dataset that the proposed procedure can lead to better variable selection and prediction than existing methods that ignore the graph information associated with the covariates.  相似文献   

11.
Variable selection is an effective methodology for dealing with models with numerous covariates. We consider the methods of variable selection for semiparametric Cox proportional hazards model under the progressive Type-II censoring scheme. The Cox proportional hazards model is used to model the influence coefficients of the environmental covariates. By applying Breslow’s “least information” idea, we obtain a profile likelihood function to estimate the coefficients. Lasso-type penalized profile likelihood estimation as well as stepwise variable selection method are explored as means to find the important covariates. Numerical simulations are conducted and Veteran’s Administration Lung Cancer data are exploited to evaluate the performance of the proposed method.  相似文献   

12.
This paper focuses on the variable selection for semiparametric varying coefficient partially linear model when the covariates are measured with additive errors and the response is missing. An adaptive lasso estimator and the smoothly clipped absolute deviation estimator as a comparison for the parameters are proposed. With the proper selection of regularization parameter, the sampling properties including the consistency of the two procedures and the oracle properties are established. Furthermore, the algorithms and corresponding standard error formulas are discussed. A simulation study is carried out to assess the finite sample performance of the proposed methods.  相似文献   

13.
The Fay–Herriot model, a popular approach in small area estimation, uses relevant covariates to improve the inference for quantities of interest in small sub-populations. The conditional Akaike information (AI) (Vaida and Blanchard, 2005 [23]) in linear mixed-effect models with i.i.d. errors can be extended to the Fay–Herriot model for measuring prediction performance. In this paper, we derive the unbiased conditional AIC (cAIC) for three popular approaches to fitting the Fay–Herriot model. The three cAIC have closed forms and are convenient to implement. We conduct a simulation study to demonstrate their accuracy in estimating the conditional AI and superior performance in model selection than the classic AIC. We also apply the cAIC in estimating county-level prevalence rates of obesity for working-age Hispanic females in California.  相似文献   

14.
This paper sets out to implement the Bayesian paradigm for fractional polynomial models under the assumption of normally distributed error terms. Fractional polynomials widen the class of ordinary polynomials and offer an additive and transportable modelling approach. The methodology is based on a Bayesian linear model with a quasi-default hyper-g prior and combines variable selection with parametric modelling of additive effects. A Markov chain Monte Carlo algorithm for the exploration of the model space is presented. This theoretically well-founded stochastic search constitutes a substantial improvement to ad hoc stepwise procedures for the fitting of fractional polynomial models. The method is applied to a data set on the relationship between ozone levels and meteorological parameters, previously analysed in the literature.  相似文献   

15.
With rapid development in the technology of measuring disease characteristics at molecular or genetic level, it is possible to collect a large amount of data on various potential predictors of the clinical outcome of interest in medical research. It is often of interest to effectively use the information on a large number of predictors to make prediction of the interested outcome. Various statistical tools were developed to overcome the difficulties caused by the high-dimensionality of the covariate space in the setting of a linear regression model. This paper focuses on the situation, where the interested outcomes are subjected to right censoring. We implemented the extended partial least squares method along with other commonly used approaches for analyzing the high-dimensional covariates to the ACTG333 data set. Especially, we compared the prediction performance of different approaches with extensive cross-validation studies. The results show that the Buckley–James based partial least squares, stepwise subset model selection and principal components regression have similar promising predictive power and the partial least square method has several advantages in terms of interpretability and numerical computation.  相似文献   

16.
In parametric regression models the sign of a coefficient often plays an important role in its interpretation. One possible approach to model selection in these situations is to consider a loss function that formulates prediction of the sign of a coefficient as a decision problem. Taking a Bayesian approach, we extend this idea of a sign based loss for selection to more complex situations. In generalized additive models we consider prediction of the sign of the derivative of an additive term at a set of predictors. Being able to predict the sign of the derivative at some point (that is, whether a term is increasing or decreasing) is one approach to selection of terms in additive modelling when interpretation is the main goal. For models with interactions, prediction of the sign of a higher order derivative can be used similarly. There are many advantages to our sign-based strategy for selection: one can work in a full or encompassing model without the need to specify priors on a model space and without needing to specify priors on parameters in submodels. Also, avoiding a search over a large model space can simplify computation. We consider shrinkage prior specifications on smoothing parameters that allow for good predictive performance in models with large numbers of terms without the need for selection, and a frequentist calibration of the parameter in our sign-based loss function when it is desired to control a false selection rate for interpretation.  相似文献   

17.
Jing Yang  Fang Lu  Hu Yang 《Statistics》2017,51(6):1179-1199
In this paper, we develop a new estimation procedure based on quantile regression for semiparametric partially linear varying-coefficient models. The proposed estimation approach is empirically shown to be much more efficient than the popular least squares estimation method for non-normal error distributions, and almost not lose any efficiency for normal errors. Asymptotic normalities of the proposed estimators for both the parametric and nonparametric parts are established. To achieve sparsity when there exist irrelevant variables in the model, two variable selection procedures based on adaptive penalty are developed to select important parametric covariates as well as significant nonparametric functions. Moreover, both these two variable selection procedures are demonstrated to enjoy the oracle property under some regularity conditions. Some Monte Carlo simulations are conducted to assess the finite sample performance of the proposed estimators, and a real-data example is used to illustrate the application of the proposed methods.  相似文献   

18.
Two different forms of Akaike's information criterion (AIC) are compared for selecting the smooth terms in penalized spline additive mixed models. The conditional AIC (cAIC) has been used traditionally as a criterion for both estimating penalty parameters and selecting covariates in smoothing, and is based on the conditional likelihood given the smooth mean and on the effective degrees of freedom for a model fit. By comparison, the marginal AIC (mAIC) is based on the marginal likelihood from the mixed‐model formulation of penalized splines which has recently become popular for estimating smoothing parameters. To the best of the authors' knowledge, the use of mAIC for selecting covariates for smoothing in additive models is new. In the competing models considered for selection, covariates may have a nonlinear effect on the response, with the possibility of group‐specific curves. Simulations are used to compare the performance of cAIC and mAIC in model selection settings that have correlated and hierarchical smooth terms. In moderately large samples, both formulations of AIC perform extremely well at detecting the function that generated the data. The mAIC does better for simple functions, whereas the cAIC is more sensitive to detecting a true model that has complex and hierarchical terms.  相似文献   

19.
Boosting is one of the most important methods for fitting regression models and building prediction rules. A notable feature of boosting is that the technique can be modified such that it includes a built-in mechanism for shrinking coefficient estimates and variable selection. This regularization mechanism makes boosting a suitable method for analyzing data characterized by small sample sizes and large numbers of predictors. We extend the existing methodology by developing a boosting method for prediction functions with multiple components. Such multidimensional functions occur in many types of statistical models, for example in count data models and in models involving outcome variables with a mixture distribution. As will be demonstrated, the new algorithm is suitable for both the estimation of the prediction function and regularization of the estimates. In addition, nuisance parameters can be estimated simultaneously with the prediction function.  相似文献   

20.
In this article, we propose a bivariate long-term distribution based on the Farlie-Gumbel-Morgenstern copula model. The proposed model allows for the presence of censored data and covariates. For inferential purposes, a Bayesian approach via Markov Chain Monte Carlo (MCMC) were considered. Further, some discussions on the model selection criteria are given. In order to examine outlying and influential observations, we present a Bayesian case deletion influence diagnostics based on the Kullback-Leibler divergence. The newly developed procedures are illustrated on artificial and real data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号