首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A hybrid censoring is a mixture of Type-I and Type-II censoring schemes. This article presents the statistical inferences on Weibull parameters when the data are hybrid censored. The maximum likelihood estimators (MLEs) and the approximate maximum likelihood estimators are developed for estimating the unknown parameters. Asymptotic distributions of the MLEs are used to construct approximate confidence intervals. Bayes estimates and the corresponding highest posterior density credible intervals of the unknown parameters are obtained under suitable priors on the unknown parameters and using the Gibbs sampling procedure. The method of obtaining the optimum censoring scheme based on the maximum information measure is also developed. Monte Carlo simulations are performed to compare the performances of the different methods and one data set is analyzed for illustrative purposes.  相似文献   

2.
This article deals with progressive first-failure censoring, which is a generalization of progressive censoring. We derive maximum likelihood estimators of the unknown parameters and reliability characteristics of generalized inverted exponential distribution using progressive first-failure censored samples. The asymptotic confidence intervals and coverage probabilities for the parameters are obtained based on the observed Fisher's information matrix. Bayes estimators of the parameters and reliability characteristics under squared error loss function are obtained using the Lindley approximation and importance sampling methods. Also, highest posterior density credible intervals for the parameters are computed using importance sampling procedure. A Monte Carlo simulation study is conducted to analyse the performance of the estimators derived in the article. A real data set is discussed for illustration purposes. Finally, an optimal censoring scheme has been suggested using different optimality criteria.  相似文献   

3.
A hybrid censoring scheme is a mixture of Type-I and Type-II censoring schemes. We study the estimation of parameters of weighted exponential distribution based on Type-II hybrid censored data. By applying the EM algorithm, maximum likelihood estimators are evaluated. Using Fisher information matrix, asymptotic confidence intervals are provided. By applying Markov chain Monte Carlo techniques, Bayes estimators, and corresponding highest posterior density confidence intervals of parameters are obtained. Monte Carlo simulations are performed to compare the performances of the different methods, and one dataset is analyzed for illustrative purposes.  相似文献   

4.
From the exact distribution of the maximum likelihood estimator of the average lifetime based on progressive hybrid exponential censored sample, we derive an explicit expression for the Bayes risk of a sampling plan when a quadratic loss function is used. The simulated annealing algorithm is then used to determine the optimal sampling plan. Some optimal Bayes solutions under progressive hybrid and ordinary hybrid censoring schemes are presented to illustrate the effectiveness of the proposed method.  相似文献   

5.
In this paper, we discuss a progressively censored inverted exponentiated Rayleigh distribution. Estimation of unknown parameters is considered under progressive censoring using maximum likelihood and Bayesian approaches. Bayes estimators of unknown parameters are derived with respect to different symmetric and asymmetric loss functions using gamma prior distributions. An importance sampling procedure is taken into consideration for deriving these estimates. Further highest posterior density intervals for unknown parameters are constructed and for comparison purposes bootstrap intervals are also obtained. Prediction of future observations is studied in one- and two-sample situations from classical and Bayesian viewpoint. We further establish optimum censoring schemes using Bayesian approach. Finally, we conduct a simulation study to compare the performance of proposed methods and analyse two real data sets for illustration purposes.  相似文献   

6.
Discrete lifetime data are very common in engineering and medical researches. In many cases the lifetime is censored at a random or predetermined time and we do not know the complete survival time. There are many situations that the lifetime variable could be dependent on the time of censoring. In this paper we propose the dependent right censoring scheme in discrete setup when the lifetime and censoring variables have a bivariate geometric distribution. We obtain the maximum likelihood estimators of the unknown parameters with their risks in closed forms. The Bayes estimators as well as the constrained Bayes estimates of the unknown parameters under the squared error loss function are also obtained. We considered an extension to the case where covariates are present along with the data. Finally we provided a simulation study and an illustrative example with a real data.  相似文献   

7.
In this paper we introduce a new type-II progressive censoring scheme for two samples. It is observed that the proposed censoring scheme is analytically more tractable than the existing joint progressive type-II censoring scheme proposed by Rasouli and Balakrishnan. The maximum likelihood estimators of the unknown parameters are obtained and their exact distributions are derived. Based on the exact distributions of the maximum likelihood estimators exact confidence intervals are also constructed. For comparison purposes we have used bootstrap confidence intervals also. One data analysis has been performed for illustrative purposes. Finally we propose some open problems.  相似文献   

8.
In this article, we discuss the maximum likelihood estimators and approximate maximum likelihood estimators of the parameters of the Weibull distribution with two different progressively hybrid censoring schemes. We also present the associated expressions of the expected total test time and the expected effective sample size which will be useful for experimental planning purpose. Finally, the efficiency of the point estimation of the parameters based on the two progressive hybrid censoring schemes are compared and the merits of each censoring scheme are discussed.  相似文献   

9.
Progressive Type-II hybrid censoring is a mixture of progressive Type-II and hybrid censoring schemes. In this paper, we discuss the statistical inference on Weibull parameters when the observed data are progressively Type-II hybrid censored. We derive the maximum likelihood estimators (MLEs) and the approximate maximum likelihood estimators (AMLEs) of the Weibull parameters. We then use the asymptotic distributions of the maximum likelihood estimators to construct approximate confidence intervals. Bayes estimates and the corresponding highest posterior density credible intervals of the unknown parameters are obtained under suitable priors on the unknown parameters and also by using the Gibbs sampling procedure. Monte Carlo simulations are then performed for comparing the confidence intervals based on all those different methods. Finally, one data set is analyzed for illustrative purposes.  相似文献   

10.
Type-I and Type-II censoring schemes are the widely used censoring schemes available for life testing experiments. A mixture of Type-I and Type-II censoring schemes is known as a hybrid censoring scheme. Different hybrid censoring schemes have been introduced in recent years. In the last few years, a progressive censoring scheme has also received considerable attention. In this article, we mainly consider the Bayesian inference of the unknown parameters of two-parameter exponential distribution under different hybrid and progressive censoring schemes. It is observed that in general the Bayes estimate and the associated credible interval of any function of the unknown parameters, cannot be obtained in explicit form. We propose to use the Monte Carlo sampling procedure to compute the Bayes estimate and also to construct the associated credible interval. Monte Carlo Simulation experiments have been performed to see the effectiveness of the proposed method in case of Type-I hybrid censored samples. The performances are quite satisfactory. One data analysis has been performed for illustrative purposes.  相似文献   

11.
In this paper, we consider the problem of making statistical inference for a truncated normal distribution under progressive type I interval censoring. We obtain maximum likelihood estimators of unknown parameters using the expectation-maximization algorithm and in sequel, we also compute corresponding midpoint estimates of parameters. Estimation based on the probability plot method is also considered. Asymptotic confidence intervals of unknown parameters are constructed based on the observed Fisher information matrix. We obtain Bayes estimators of parameters with respect to informative and non-informative prior distributions under squared error and linex loss functions. We compute these estimates using the importance sampling procedure. The highest posterior density intervals of unknown parameters are constructed as well. We present a Monte Carlo simulation study to compare the performance of proposed point and interval estimators. Analysis of a real data set is also performed for illustration purposes. Finally, inspection times and optimal censoring plans based on the expected Fisher information matrix are discussed.  相似文献   

12.
For the conventional type-II hybrid censoring scheme (HCS) in Childs et al., a Bayesian variable sampling plan among the class of the maximum likelihood estimators was derived by Lin et al. under the loss function, which does not include the cost of experimental time. Instead of taking the conventional type-II hybrid censoring scheme, a persuasive argument leads to taking the modified type-II hybrid censoring scheme (MHCS) if the cost of experimental time is included in the loss function. In this article, we apply the decision-theoretic approach for the concerned acceptance sampling. With the type-II MHCS, based on a sufficient statistics, the optimal Bayesian sampling plan is derived under a general loss function. Furthermore, for the conjugate prior distribution, the closed-form formula of the Bayes decision rule can be obtained under the quadratic decision loss. Numerical study is given to demonstrate the performance of the proposed Bayesian sampling plan.  相似文献   

13.
This paper considers the statistical analysis for competing risks model under the Type-I progressively hybrid censoring from a Weibull distribution. We derive the maximum likelihood estimates and the approximate maximum likelihood estimates of the unknown parameters. We then use the bootstrap method to construct the confidence intervals. Based on the non informative prior, a sampling algorithm using the acceptance–rejection sampling method is presented to obtain the Bayes estimates, and Monte Carlo method is employed to construct the highest posterior density credible intervals. The simulation results are provided to show the effectiveness of all the methods discussed here and one data set is analyzed.  相似文献   

14.
Epstein (1954) introduced the Type-I hybrid censoring scheme as a mixture of Type-I and Type-II censoring schemes. Childs et al. (2003) introduced the Type-II hybrid censoring scheme as an alternative to Type-I hybrid censoring scheme, and provided the exact distribution of the maximum likelihood estimator of the mean of a one-parameter exponential distribution based on Type-II hybrid censored samples. The associated confidence interval also has been provided. The main aim of this paper is to consider a two-parameter exponential distribution, and to derive the exact distribution of the maximum likelihood estimators of the unknown parameters based on Type-II hybrid censored samples. The marginal distributions and the exact confidence intervals are also provided. The results can be used to derive the exact distribution of the maximum likelihood estimator of the percentile point, and to construct the associated confidence interval. Different methods are compared using extensive simulations and one data analysis has been performed for illustrative purposes.  相似文献   

15.
This article is devoted to the development of product of spacings estimator for a Progressive hybrid Type-I censoring scheme with binomial removals. The experimental units are assumed to follow inverse Lindley distribution. We propose a Bayes estimator of associated scale parameter based on the product of spacings function and simultaneously compare it with that obtained under a usual Bayesian estimation procedure. The estimators are obtained under the squared error loss function along with corresponding HP intervals evaluated by using the Markov chain Monte-Carlo technique. The classical product of spacings estimator has also been derived and compared with the maximum likelihood estimator in addition to 95% average asymptotic confidence intervals. The applicability of the proposed methods is demonstrated by analysing a real data of guinea pigs affected with tuberculosis for the considered censoring scheme.  相似文献   

16.
In this paper, we consider paired survival data, in which pair members are subject to the same right censoring time, but they are dependent on each other. Assuming the Marshall–Olkin Multivariate Weibull distribution for the joint distribution of the lifetimes (X1, X2) and the censoring time X3, we derive the joint density of the actual observed data and obtain maximum likelihood estimators, Bayes estimators and posterior regret Gamma minimax estimators of the unknown parameters under squared error loss and weighted squared error loss functions. We compare the performances of the maximum likelihood estimators and Bayes estimators numerically in terms of biases and estimated Mean Squared Error Loss.  相似文献   

17.
In this article, point and interval estimations of the parameters α and β of the inverse Weibull distribution (IWD) have been studied based on Balakrishnan’s unified hybrid censoring scheme (UHCS), see Balakrishnan et al. In point estimation, the maximum likelihood (ML) and Bayes (B) methods have been used. The Bayes estimates have been computed based on squared error loss (SEL) function and Linex loss function and using Markov Chain Monte Carlo (MCMC) algorithm. In interval estimation, a (1 ? τ) × 100% approximate, bootstrap-p, credible and highest posterior density (HPD) confidence intervals (CIs) for the parameters α and β have been introduced. Based on Monte Carlo simulation, Bayes estimates have been compared with their corresponding maximum likelihood estimates by computing the mean squared errors (MSEs) of all estimators. Finally, point and interval estimations of all parameters have been studied based on a real data set as an illustrative example.  相似文献   

18.
This paper addresses the estimation for the unknown scale parameter of the half-logistic distribution based on a Type-I progressively hybrid censoring scheme. We evaluate the maximum likelihood estimate (MLE) via numerical method, and EM algorithm, and also the approximate maximum likelihood estimate (AMLE). We use a modified acceptance rejection method to obtain the Bayes estimate and corresponding highest posterior confidence intervals. We perform Monte Carlo simulations to compare the performances of the different methods, and we analyze one dataset for illustrative purposes.  相似文献   

19.
The aim of this paper is twofold. First we discuss the maximum likelihood estimators of the unknown parameters of a two-parameter Birnbaum–Saunders distribution when the data are progressively Type-II censored. The maximum likelihood estimators are obtained using the EM algorithm by exploiting the property that the Birnbaum–Saunders distribution can be expressed as an equal mixture of an inverse Gaussian distribution and its reciprocal. From the proposed EM algorithm, the observed information matrix can be obtained quite easily, which can be used to construct the asymptotic confidence intervals. We perform the analysis of two real and one simulated data sets for illustrative purposes, and the performances are quite satisfactory. We further propose the use of different criteria to compare two different sampling schemes, and then find the optimal sampling scheme for a given criterion. It is observed that finding the optimal censoring scheme is a discrete optimization problem, and it is quite a computer intensive process. We examine one sub-optimal censoring scheme by restricting the choice of censoring schemes to one-step censoring schemes as suggested by Balakrishnan (2007), which can be obtained quite easily. We compare the performances of the sub-optimal censoring schemes with the optimal ones, and observe that the loss of information is quite insignificant.  相似文献   

20.
ABSTRACT

We consider point and interval estimation of the unknown parameters of a generalized inverted exponential distribution in the presence of hybrid censoring. The maximum likelihood estimates are obtained using EM algorithm. We then compute Fisher information matrix using the missing value principle. Bayes estimates are derived under squared error and general entropy loss functions. Furthermore, approximate Bayes estimates are obtained using Tierney and Kadane method as well as using importance sampling approach. Asymptotic and highest posterior density intervals are also constructed. Proposed estimates are compared numerically using Monte Carlo simulations and a real data set is analyzed for illustrative purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号