共查询到20条相似文献,搜索用时 0 毫秒
1.
Bayesian multivariate GARCH models with dynamic correlations and asymmetric error distributions 总被引:1,自引:0,他引:1
The main goal in this paper is to develop and apply stochastic simulation techniques for GARCH models with multivariate skewed distributions using the Bayesian approach. Both parameter estimation and model comparison are not trivial tasks and several approximate and computationally intensive methods (Markov chain Monte Carlo) will be used to this end. We consider a flexible class of multivariate distributions which can model both skewness and heavy tails. Also, we do not fix tail behaviour when dealing with fat tail distributions but leave it subject to inference. 相似文献
2.
Steven X. Wei 《Econometric Reviews》2013,32(4):417-439
This paper develops a posterior simulation method for a dynamic Tobit model. The major obstacle rooted in such a problem lies in high dimensional integrals, induced by dependence among censored observations, in the likelihood function. The primary contribution of this study is to develop a practical and efficient sampling scheme for the conditional posterior distributions of the censored (i.e., unobserved) data, so that the Gibbs sampler with the data augmentation algorithm is successfully applied. The substantial differences between this approach and some existing methods are highlighted. The proposed simulation method is investigated by means of a Monte Carlo study and applied to a regression model of Japanese exports of passenger cars to the U.S. subject to a non-tariff trade barrier. 相似文献
3.
A bayesian approach to dynamic tobit models 总被引:1,自引:0,他引:1
Steven X. Wei 《Econometric Reviews》1999,18(4):417-439
This paper develops a posterior simulation method for a dynamic Tobit model. The major obstacle rooted in such a problem lies in high dimensional integrals, induced by dependence among censored observations, in the likelihood function. The primary contribution of this study is to develop a practical and efficient sampling scheme for the conditional posterior distributions of the censored (i.e., unobserved) data, so that the Gibbs sampler with the data augmentation algorithm is successfully applied. The substantial differences between this approach and some existing methods are highlighted. The proposed simulation method is investigated by means of a Monte Carlo study and applied to a regression model of Japanese exports of passenger cars to the U.S. subject to a non-tariff trade barrier. 相似文献
4.
The original article to which this Erratum refers was published in The Canadian Journal of Statistics, Vol. 31, No. 2, 2003, pp. 129–150. 相似文献
5.
《Journal of Statistical Computation and Simulation》2012,82(4):235-248
In this work we study robustness in Bayesian models through a generalization of the Normal distribution. We show new appropriate techniques in order to deal with this distribution in Bayesian inference. Then we propose two approaches to decide, in some applications, if we should replace the usual Normal model by this generalization. First, we pose this dilemma as a model rejection problem, using diagnostic measures. In the second approach we evaluate the model's predictive efficiency. We illustrate those perspectives with a simulation study, a non linear model and a longitudinal data model. 相似文献
6.
7.
《Journal of Statistical Computation and Simulation》2012,82(11):1635-1649
In this paper, we discuss a fully Bayesian quantile inference using Markov Chain Monte Carlo (MCMC) method for longitudinal data models with random effects. Under the assumption of error term subject to asymmetric Laplace distribution, we establish a hierarchical Bayesian model and obtain the posterior distribution of unknown parameters at τ-th level. We overcome the current computational limitations using two approaches. One is the general MCMC technique with Metropolis–Hastings algorithm and another is the Gibbs sampling from the full conditional distribution. These two methods outperform the traditional frequentist methods under a wide array of simulated data models and are flexible enough to easily accommodate changes in the number of random effects and in their assumed distribution. We apply the Gibbs sampling method to analyse a mouse growth data and some different conclusions from those in the literatures are obtained. 相似文献
8.
In this paper an attempt has been made to examine the multivariate versions of the common process capability indices (PCI's) denoted by Cp and Cpk . Markov chain Monte Carlo (MCMC) methods are used to generate sampling distributions for the various PCI's from where inference is performed. Some Bayesian model checking techniques are developed and implemented to examine how well our model fits the data. Finally the methods are exemplified on a historical aircraft data set collected by the Pratt and Whitney Company. 相似文献
9.
ABSTRACTA general Bayesian random effects model for analyzing longitudinal mixed correlated continuous and negative binomial responses with and without missing data is presented. This Bayesian model, given some random effects, uses a normal distribution for the continuous response and a negative binomial distribution for the count response. A Markov Chain Monte Carlo sampling algorithm is described for estimating the posterior distribution of the parameters. This Bayesian model is illustrated by a simulation study. For sensitivity analysis to investigate the change of parameter estimates with respect to the perturbation from missing at random to not missing at random assumption, the use of posterior curvature is proposed. The model is applied to a medical data, obtained from an observational study on women, where the correlated responses are the negative binomial response of joint damage and continuous response of body mass index. The simultaneous effects of some covariates on both responses are also investigated. 相似文献
10.
Bayesian inference for multivariate gamma distributions 总被引:2,自引:1,他引:1
Efthymios G. Tsionas 《Statistics and Computing》2004,14(3):223-233
The paper considers the multivariate gamma distribution for which the method of moments has been considered as the only method of estimation due to the complexity of the likelihood function. With a non-conjugate prior, practical Bayesian analysis can be conducted using Gibbs sampling with data augmentation. The new methods are illustrated using artificial data for a trivariate gamma distribution as well as an application to technical inefficiency estimation. 相似文献
11.
Yuan Ji Guosheng Yin Kam-Wah Tsui Mikhail G. Kolonin Jessica Sun Wadih Arap Renata Pasqualini Kim-Anh Do 《Journal of the Royal Statistical Society. Series C, Applied statistics》2007,56(2):139-152
Summary. Phage display is a biological process that is used to screen random peptide libraries for ligands that bind to a target of interest with high affinity. On the basis of a count data set from an innovative multistage phage display experiment, we propose a class of Bayesian mixture models to cluster peptide counts into three groups that exhibit different display patterns across stages. Among the three groups, the investigators are particularly interested in that with an ascending display pattern in the counts, which implies that the peptides are likely to bind to the target with strong affinity. We apply a Bayesian false discovery rate approach to identify the peptides with the strongest affinity within the group. A list of peptides is obtained, among which important ones with meaningful functions are further validated by biologists. To examine the performance of the Bayesian model, we conduct a simulation study and obtain desirable results. 相似文献
12.
《Journal of Statistical Computation and Simulation》2012,82(2):394-413
Mixture models are flexible tools in density estimation and classification problems. Bayesian estimation of such models typically relies on sampling from the posterior distribution using Markov chain Monte Carlo. Label switching arises because the posterior is invariant to permutations of the component parameters. Methods for dealing with label switching have been studied fairly extensively in the literature, with the most popular approaches being those based on loss functions. However, many of these algorithms turn out to be too slow in practice, and can be infeasible as the size and/or dimension of the data grow. We propose a new, computationally efficient algorithm based on a loss function interpretation, and show that it can scale up well in large data set scenarios. Then, we review earlier solutions which can scale up well for large data set, and compare their performances on simulated and real data sets. We conclude with some discussions and recommendations of all the methods studied. 相似文献
13.
The authors present theoretical results that show how one can simulate a mixture distribution whose components live in subspaces of different dimension by reformulating the problem in such a way that observations may be drawn from an auxiliary continuous distribution on the largest subspace and then transformed in an appropriate fashion. Motivated by the importance of enlarging the set of available Markov chain Monte Carlo (MCMC) techniques, the authors show how their results can be fruitfully employed in problems such as model selection (or averaging) of nested models, or regeneration of Markov chains for evaluating standard deviations of estimated expectations derived from MCMC simulations. 相似文献
14.
In this paper we introduce a new class of multivariate unimodal distributions, motivated by Khintchine's representation for unimodal densities on the real line. We start by introducing a new class of unimodal distributions which can then be naturally extended to higher dimensions, using the multivariate Gaussian copula. Under both univariate and multivariate settings, we provide MCMC algorithms to perform inference about the model parameters and predictive densities. The methodology is illustrated with univariate and bivariate examples, and with variables taken from a real data set. 相似文献
15.
Ji-Ji Xing 《统计学通讯:理论与方法》2017,46(9):4545-4555
In this paper, we adopt the Bayesian approach to expectile regression employing a likelihood function that is based on an asymmetric normal distribution. We demonstrate that improper uniform priors for the unknown model parameters yield a proper joint posterior. Three simulated data sets were generated to evaluate the proposed method which show that Bayesian expectile regression performs well and has different characteristics comparing with Bayesian quantile regression. We also apply this approach into two real data analysis. 相似文献
16.
Bayesian Inference for a Stochastic Epidemic Model with Uncertain Numbers of Susceptibles of Several Types 总被引:1,自引:0,他引:1
Yu Hayakawa Philip D. O'Neill Darren Upton Paul S.F. Yip 《Australian & New Zealand Journal of Statistics》2003,45(4):491-502
A stochastic epidemic model with several kinds of susceptible is used to analyse temporal disease outbreak data from a Bayesian perspective. Prior distributions are used to model uncertainty in the actual numbers of susceptibles initially present. The posterior distribution of the parameters of the model is explored via Markov chain Monte Carlo methods. The methods are illustrated using two datasets, and the results are compared where possible to results obtained by previous analyses. 相似文献
17.
In some fields, we are forced to work with missing data in multivariate time series. Unfortunately, the data analysis in this context cannot be carried out in the same way as in the case of complete data. To deal with this problem, a Bayesian analysis of multivariate threshold autoregressive models with exogenous inputs and missing data is carried out. In this paper, Markov chain Monte Carlo methods are used to obtain samples from the involved posterior distributions, including threshold values and missing data. In order to identify autoregressive orders, we adapt the Bayesian variable selection method in this class of multivariate process. The number of regimes is estimated using marginal likelihood or product parameter-space strategies. 相似文献
18.
David P. M. Scollnik 《统计学通讯:理论与方法》2013,42(11):2901-2918
Shookri and Consul (1989) and Scollnik (1995) have previously considered the Bayesian analysis of an overdispersed generalized Poisson model. Scollnik (1995) also considered the Bayesian analysis of an ordinary Poisson and over-dispersed generalized Poisson mixture model. In this paper, we discuss the Bayesian analysis of these models when they are utilised in a regression context. Markov chain Monte Carlo methods are utilised, and an illustrative analysis is provided. 相似文献
19.
One of the standard problems in statistics consists of determining the relationship between a response variable and a single predictor variable through a regression function. Background scientific knowledge is often available that suggests that the regression function should have a certain shape (e.g. monotonically increasing or concave) but not necessarily a specific parametric form. Bernstein polynomials have been used to impose certain shape restrictions on regression functions. The Bernstein polynomials are known to provide a smooth estimate over equidistant knots. Bernstein polynomials are used in this paper due to their ease of implementation, continuous differentiability, and theoretical properties. In this work, we demonstrate a connection between the monotonic regression problem and the variable selection problem in the linear model. We develop a Bayesian procedure for fitting the monotonic regression model by adapting currently available variable selection procedures. We demonstrate the effectiveness of our method through simulations and the analysis of real data. 相似文献
20.
Nur Aainaa Rozliman Rossita Muhamad Yunus 《Journal of Statistical Computation and Simulation》2018,88(2):203-220
In most practical applications, the quality of count data is often compromised due to errors-in-variables (EIVs). In this paper, we apply Bayesian approach to reduce bias in estimating the parameters of count data regression models that have mismeasured independent variables. Furthermore, the exposure model is misspecified with a flexible distribution, hence our approach remains robust against any departures from normality in its true underlying exposure distribution. The proposed method is also useful in realistic situations as the variance of EIVs is estimated instead of assumed as known, in contrast with other methods of correcting bias especially in count data EIVs regression models. We conduct simulation studies on synthetic data sets using Markov chain Monte Carlo simulation techniques to investigate the performance of our approach. Our findings show that the flexible Bayesian approach is able to estimate the values of the true regression parameters consistently and accurately. 相似文献