首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Parameter design or robust parameter design (RPD) is an engineering methodology intended as a cost-effective approach for improving the quality of products and processes. The goal of parameter design is to choose the levels of the control variables that optimize a defined quality characteristic. An essential component of RPD involves the assumption of well estimated models for the process mean and variance. Traditionally, the modeling of the mean and variance has been done parametrically. It is often the case, particularly when modeling the variance, that nonparametric techniques are more appropriate due to the nature of the curvature in the underlying function. Most response surface experiments involve sparse data. In sparse data situations with unusual curvature in the underlying function, nonparametric techniques often result in estimates with problematic variation whereas their parametric counterparts may result in estimates with problematic bias. We propose the use of semi-parametric modeling within the robust design setting, combining parametric and nonparametric functions to improve the quality of both mean and variance model estimation. The proposed method will be illustrated with an example and simulations.  相似文献   

2.
As split-plot designs are commonly used in robust design it is important to identify factors in these designs that influence the dispersion of the response variable. In this article, the Bergman-Hynén method, developed for identification of dispersion effects in unreplicated experiments, is modified to be used in the context of split-plot experiments. The modification of the Bergman-Hynén method enables identification of factors that influence specific variance components in unreplicated two-level fractional factorial splitplot experiments. An industrial example is used to illustrate the proposed method.  相似文献   

3.
In recent years there has been considerable attention paid to robust parameter design as a strategy for variance reduction. Of particular concern is the selection of a good experimental plan in light of the two different types of factors in the experiment (control and noise) and the asymmetric manner in which effects of the same order are treated. Recent work has focussed on the selection of regular fractional factorial designs in this setting. In this article, we consider the construction and selection of optimal non-regular experiment plans for robust parameter design. Our approach defines the word-length pattern for non-regular fractional factorial designs with two different types of factors which allows for the choice of optimal design to emphasize the estimation of the effects of interest. We use this new word-length pattern to rank non-regular robust parameter designs. We show that one can easily find minimum aberration robust parameter designs from existing orthogonal arrays. The methodology is demonstrated by finding optimal assignments for control and noise factors for 12, 16 and 20-run orthogonal arrays.  相似文献   

4.
SUMMARY The combined array provides a powerful, more statistically rigorous alternative to Taguchi's crossed-array approach to robust parameter design. The combined array assumes a single linear model in the control and the noise factors. One may then find conditions for the control factors which will minimize an appropriate loss function that involves the noise factors. The most appropriate loss function is often simply the resulting process variance, recognizing that the noise factors are actually random effects in the process. Because the major focus of such an experiment is to optimize the estimated process variance, it is vital to understand the resulting prediction properties. This paper develops the mean squared error for the estimated process variance for the combined array approach, under the assumption that the model is correctly specified. Specific combined arrays are compared for robustness. A practical example outlines how this approach may be used to select appropriate combined arrays within a particular experimental situation.  相似文献   

5.
Robust parameter design is an effective methodology for reducing variance and improving the quality of a product and a process. Recent work has mainly concentrated on two‐level robust parameter designs. We consider general robust parameter designs with factors having two or more or mixed levels these levels being either qualitative or quantitative. We propose a methodology and develop a generalised minimum aberration optimality criterion for selecting optimal robust parameter designs. A catalogue of 18‐run optimal designs is constructed and tabulated.  相似文献   

6.
Commentaries are informative essays dealing with viewpoints of statistical practice, statistical education, and other topics considered to be of general interest to the broad readership of The American Statistician. Commentaries are similar in spirit to Letters to the Editor, but they involve longer discussions of background, issues, and perspectives. All commentaries will be refereed for their merit and compatibility with these criteria.

Proper methodology for the analysis of covariance for experiments designed in a split-plot or split-block design is not found in the statistical literature. Analyses for these designs are often performed incompletely or even incorrectly. This is especially true when popular statistical computer software packages are used for the analysis of these designs. This article provides several appropriate models, ANOVA tables, and standard errors for comparisons from experiments arranged in a standard split-plot, split–split-plot, or split-block design where a covariate has been measured on the smallest size experimental unit.  相似文献   

7.
Abstract

Robust parameter design (RPD) is an effective tool, which involves experimental design and strategic modeling to determine the optimal operating conditions of a system. The usual assumptions of RPD are that normally distributed experimental data and no contamination due to outliers. And generally the parameter uncertainties in response models are neglected. However, using normal theory modeling methods for a skewed data and ignoring parameter uncertainties can create a chain of degradation in optimization and production phases such that misleading fit, poor estimated optimal operating conditions, and poor quality products. This article presents a new approach based on confidence interval (CI) response modeling for the process mean. The proposed interval robust design makes the system median unbiased for the mean and uses midpoint of the interval as a measure of location performance response. As an alternative robust estimator for the process variance response modeling, using biweight midvariance is proposed which is both resistant and robust of efficiency where normality is not met. The results further show that the proposed interval robust design gives a robust solution to the skewed structure of the data and to contaminated data. The procedure and its advantages are illustrated using two experimental design studies.  相似文献   

8.
Genichi Taguchi has emphasized the use of designed experiments in several novel and important applications. In this paper we focus on the use of statistical experimental designs in designingproducts to be robust to environmental conditions. The engineering concept of robust product design is very important because it is frequently impossible or prohibitively expensive to control or eliminate variation resulting from environmental conditions. Robust product design enablesthe experimenter to discover how to modify the design of the product to minimize the effect dueto variation from environmental sources. In experiments of this kind, Taguchi's total experimental arrangement consists of a cross-product of two experimental designs:an inner array containing the design factors and an outer array containing the environmental factors. Except in situations where both these arrays are small, this arrangement may involve a prohibitively large amount of experimental work. One of the objectives of this paper is to show how this amount of work can be reduced. In this paper we investigate the applicability of split-plot designs for thisparticular experimental situation. Consideration of the efficiency of split-plot designs and anexamination of several variants of split-plot designs indicates that experiments conductedin a split-plot mode can be of tremendous value in robust product design since they not only enable the contrasts of interest to be estimated efficiently but also the experiments can be considerably easier to conduct than the designs proposed by Taguchi.  相似文献   

9.
We construct optimal designs for heteroscedastic models when the goal is to make efficient prediction over a compact interval. It is assumed that the point or points which are interesting to predict are not known before the experiment is run. Two minimax strategies for minimizing the maximum fitted variance and maximum predictive variance across the interval of interest are proposed and, optimal designs are found and compared. An algorithm for generating these designs is included.  相似文献   

10.
In robust parameter design, variance effects and mean effects in a factorial experiment are modelled simultaneously. If variance effects are present in a model, correlations are induced among the naive estimators of the mean effects. A simple normal quantile plot of the mean effects may be misleading because the mean effects are no longer iid under the null hypothesis that they are zero. Adjusted quantiles are computed for the case when one variance effect is significant and examples of 8-run and 16-run fractional factorial designs are examined in detail. We find that the usual normal quantiles are similar to adjusted quantiles for all but the largest and smallest ordered effects for which they are conservative. Graphically, the qualitative difference between the two sets of quantiles is negligible (even in the presence of large variance effects) and we conclude that normal probability plots are robust in the presence of variance effects.  相似文献   

11.
In the analysis of recurrent events where the primary interest lies in studying covariate effects on the expected number of events occurring over a period of time, it is appealing to base models on the cumulative mean function (CMF) of the processes (Lawless & Nadeau 1995). In many chronic diseases, however, more than one type of event is manifested. Here we develop a robust inference procedure for joint regression models for the CMFs arising from a bivariate point process. Consistent parameter estimates with robust variance estimates are obtained via unbiased estimating functions for the CMFs. In most situations, the covariance structure of the bivariate point processes is difficult to specify correctly, but when it is known, an optimal estimating function for the CMFs can be obtained. As a convenient model for more general settings, we suggest the use of the estimating functions arising from bivariate mixed Poisson processes. Simulation studies demonstrate that the estimators based on this working model are practically unbiased with robust variance estimates. Furthermore, hypothesis tests may be based on the generalized Wald or generalized score tests. Data from a trial of patients with bronchial asthma are analyzed to illustrate the estimation and inference procedures.  相似文献   

12.
Designing an experiment to fit a response surface model typically involves selecting among several candidate designs. There are often many competing criteria that could be considered in selecting the design, and practitioners are typically forced to make trade-offs between these objectives when choosing the final design. Traditional alphabetic optimality criteria are often used in evaluating and comparing competing designs. These optimality criteria are single-number summaries for quality properties of the design such as the precision with which the model parameters are estimated or the uncertainty associated with prediction. Other important considerations include the robustness of the design to model misspecification and potential problems arising from spurious or missing data. Several qualitative and quantitative properties of good response surface designs are discussed, and some of their important trade-offs are considered. Graphical methods for evaluating design performance for several important response surface problems are discussed and we show how these techniques can be used to compare competing designs. These graphical methods are generally superior to the simplistic summaries of alphabetic optimality criteria. Several special cases are considered, including robust parameter designs, split-plot designs, mixture experiment designs, and designs for generalized linear models.  相似文献   

13.
Mixed models are powerful tools for the analysis of clustered data and many extensions of the classical linear mixed model with normally distributed response have been established. As with all parametric (P) models, correctness of the assumed model is critical for the validity of the ensuing inference. An incorrectly specified P means model may be improved by using a local, or nonparametric (NP), model. Two local models are proposed by a pointwise weighting of the marginal and conditional variance–covariance matrices. However, NP models tend to fit to irregularities in the data and may provide fits with high variance. Model robust regression techniques estimate mean response as a convex combination of a P and a NP model fit to the data. It is a semiparametric method by which incomplete or incorrectly specified P models can be improved by adding an appropriate amount of the NP fit. We compare the approximate integrated mean square error of the P, NP, and mixed model robust methods via a simulation study and apply these methods to two real data sets: the monthly wind speed data from countries in Ireland and the engine speed data.  相似文献   

14.
Abstract

We consider the unbalanced split-plot design with the whole plot and the subplot effect from nonnormal universes. The three estimators for the whole plot effect variance component are obtained. An approximate test for significance of the whole plot effect variance component is presented.  相似文献   

15.
Nonlinear mixed‐effects (NLME) modeling is one of the most powerful tools for analyzing longitudinal data especially under the sparse sampling design. The determinant of the Fisher information matrix is a commonly used global metric of the information that can be provided by the data under a given model. However, in clinical studies, it is also important to measure how much information the data provide for a certain parameter of interest under the assumed model, for example, the clearance in population pharmacokinetic models. This paper proposes a new, easy‐to‐interpret information metric, the “relative information” (RI), which is designed for specific parameters of a model and takes a value between 0% and 100%. We establish the relationship between interindividual variability for a specific parameter and the variance of the associated parameter estimator, demonstrating that, under a “perfect” experiment (eg, infinite samples or/and minimum experimental error), the RI and the variance of the model parameter estimator converge, respectively, to 100% and the ratio of the interindividual variability for that parameter and the number of subjects. Extensive simulation experiments and analyses of three real datasets show that our proposed RI metric can accurately characterize the information for parameters of interest for NLME models. The new information metric can be readily used to facilitate study designs and model diagnosis.  相似文献   

16.
ABSTRACT

A vast majority of the literature on the design of sampling plans by variables assumes that the distribution of the quality characteristic variable is normal, and that only its mean varies while its variance is known and remains constant. But, for many processes, the quality variable is nonnormal, and also either one or both of the mean and the variance of the variable can vary randomly. In this paper, an optimal economic approach is developed for design of plans for acceptance sampling by variables having Inverse Gaussian (IG) distributions. The advantage of developing an IG distribution based model is that it can be used for diverse quality variables ranging from highly skewed to almost symmetrical. We assume that the process has two independent assignable causes, one of which shifts the mean of the quality characteristic variable of a product and the other shifts the variance. Since a product quality variable may be affected by any one or both of the assignable causes, three different likely cases of shift (mean shift only, variance shift only, and both mean and variance shift) have been considered in the modeling process. For all of these likely scenarios, mathematical models giving the cost of using a variable acceptance sampling plan are developed. The cost models are optimized in selecting the optimal sampling plan parameters, such as the sample size, and the upper and lower acceptance limits. A large set of numerical example problems is solved for all the cases. Some of these numerical examples are also used in depicting the consequences of: 1) using the assumption that the quality variable is normally distributed when the true distribution is IG, and 2) using sampling plans from the existing standards instead of the optimal plans derived by the methodology developed in this paper. Sensitivities of some of the model input parameters are also studied using the analysis of variance technique. The information obtained on the parameter sensitivities can be used by the model users on prudently allocating resources for estimation of input parameters.  相似文献   

17.
Summary.  We introduce a new method for generating optimal split-plot designs. These designs are optimal in the sense that they are efficient for estimating the fixed effects of the statistical model that is appropriate given the split-plot design structure. One advantage of the method is that it does not require the prior specification of a candidate set. This makes the production of split-plot designs computationally feasible in situations where the candidate set is too large to be tractable. The method allows for flexible choice of the sample size and supports inclusion of both continuous and categorical factors. The model can be any linear regression model and may include arbitrary polynomial terms in the continuous factors and interaction terms of any order. We demonstrate the usefulness of this flexibility with a 100-run polypropylene experiment involving 11 factors where we found a design that is substantially more efficient than designs that are produced by using other approaches.  相似文献   

18.
We discuss in the present paper the analysis of heteroscedastic regression models and their applications to off-line quality control problems. It is well known that the method of pseudo-likelihood is usually preferred to full maximum likelihood since estimators of the parameters in the regression function obtained are more robust to misspecification of the variance function. Despite its popularity, however, existing theoretical results are difficult to apply and are of limited use in many applications. Using more recent results in estimating equations, we obtain an efficient algorithm for computing the pseudo-likelihood estimator with desirable convergence properties and also derive simple, explicit and easy to apply asymptotic results. These results are used to look in detail at variance minimization in off-line quality control, yielding techniques of inferences for the optimized design parameter. In application of some existing approaches to off-line quality control, such as the dual response methodology, rigorous statistical inference techniques are scarce and difficult to obtain. An example of off-line quality control is presented to discuss the practical aspects involved in the application of the results obtained and to address issues such as data transformation, model building and the optimization of design parameters. The analysis shows very encouraging results, and is seen to be able to unveil some important information not found in previous analyses.  相似文献   

19.
Abstract

Model misspecification in generalized linear models (GLMs) occurs usually when the linear predictor and/or the link function assumed are incorrect. This article discusses the effect of such misspecification on design selection for multinomial GLMs and proposes the use of quantile dispersion graphs to select robust designs. Due to misspecification in the model, parameter estimates are usually biased and the designs are compared on the basis of their mean squared error of prediction. Several numerical examples including a real data set are presented to illustrate the proposed methodology.  相似文献   

20.
It is well known that it is difficult to construct minimax optimal designs. Furthermore, since in practice we never know the true error variance, it is important to allow small deviations and construct robust optimal designs. We investigate a class of minimax optimal regression designs for models with heteroscedastic errors that are robust against possible misspecification of the error variance. Commonly used A-, c-, and I-optimality criteria are included in this class of minimax optimal designs. Several theoretical results are obtained, including a necessary condition and a reflection symmetry for these minimax optimal designs. In this article, we focus mainly on linear models and assume that an approximate error variance function is available. However, we also briefly discuss how the methodology works for nonlinear models. We then propose an effective algorithm to solve challenging nonconvex optimization problems to find minimax designs on discrete design spaces. Examples are given to illustrate minimax optimal designs and their properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号