首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article considers fixed effects (FE) estimation for linear panel data models under possible model misspecification when both the number of individuals, n, and the number of time periods, T, are large. We first clarify the probability limit of the FE estimator and argue that this probability limit can be regarded as a pseudo-true parameter. We then establish the asymptotic distributional properties of the FE estimator around the pseudo-true parameter when n and T jointly go to infinity. Notably, we show that the FE estimator suffers from the incidental parameters bias of which the top order is O(T? 1), and even after the incidental parameters bias is completely removed, the rate of convergence of the FE estimator depends on the degree of model misspecification and is either (nT)? 1/2 or n? 1/2. Second, we establish asymptotically valid inference on the (pseudo-true) parameter. Specifically, we derive the asymptotic properties of the clustered covariance matrix (CCM) estimator and the cross-section bootstrap, and show that they are robust to model misspecification. This establishes a rigorous theoretical ground for the use of the CCM estimator and the cross-section bootstrap when model misspecification and the incidental parameters bias (in the coefficient estimate) are present. We conduct Monte Carlo simulations to evaluate the finite sample performance of the estimators and inference methods, together with a simple application to the unemployment dynamics in the U.S.  相似文献   

2.
In this paper, we propose a smoothed Q‐learning algorithm for estimating optimal dynamic treatment regimes. In contrast to the Q‐learning algorithm in which nonregular inference is involved, we show that, under assumptions adopted in this paper, the proposed smoothed Q‐learning estimator is asymptotically normally distributed even when the Q‐learning estimator is not and its asymptotic variance can be consistently estimated. As a result, inference based on the smoothed Q‐learning estimator is standard. We derive the optimal smoothing parameter and propose a data‐driven method for estimating it. The finite sample properties of the smoothed Q‐learning estimator are studied and compared with several existing estimators including the Q‐learning estimator via an extensive simulation study. We illustrate the new method by analyzing data from the Clinical Antipsychotic Trials of Intervention Effectiveness–Alzheimer's Disease (CATIE‐AD) study.  相似文献   

3.
This article presents limit theorems of the multipower variation based on a generalized difference for the fractional integral process with jumps observed in high frequency. In particular, we obtain the large number laws for threshold multipower variation and multipower variation and the associated central limit theorems. The limit theorems are applied to estimate Hurst parameter, and the consistence and asymptotic distribution of the estimator are established. These results will provide some new statistical tools to analyze long-memory effect in high-frequency situation.  相似文献   

4.
In survival studies, current status data are frequently encountered when some individuals in a study are not successively observed. This paper considers the problem of simultaneous variable selection and parameter estimation in the high-dimensional continuous generalized linear model with current status data. We apply the penalized likelihood procedure with the smoothly clipped absolute deviation penalty to select significant variables and estimate the corresponding regression coefficients. With a proper choice of tuning parameters, the resulting estimator is shown to be a root n/pn-consistent estimator under some mild conditions. In addition, we show that the resulting estimator has the same asymptotic distribution as the estimator obtained when the true model is known. The finite sample behavior of the proposed estimator is evaluated through simulation studies and a real example.  相似文献   

5.
This research investigates long memory financial equity markets using three heuristic methodologies namely a proposed modified variance time-aggregated plot, modified rescaled-range plot and periodogram approaches. The intensity of the long memory process is quantified in terms of Hurst parameter (H). Five Malaysian equity market indices are selected in the empirical studies with the inclusion of pre- and post-drastic economic events. Our empirical results evidenced dissimilar long memory behaviours in the different regimes of significant economic events. It is also found that after the short-memory adjustment, all the equity markets exhibited substantial reductions in long memory estimations.  相似文献   

6.
We consider the smoothed maximum likelihood estimator and the smoothed Grenander‐type estimator for a monotone baseline hazard rate λ 0 in the Cox model. We analyze their asymptotic behaviour and show that they are asymptotically normal at rate n m /(2m +1), when λ 0 is m ≥2 times continuously differentiable, and that both estimators are asymptotically equivalent. Finally, we present numerical results on pointwise confidence intervals that illustrate the comparable behaviour of the two methods.  相似文献   

7.
Based on progressively Type-II censored samples, this article deals with inference for the stress-strength reliability R = P(Y < X) when X and Y are two independent two-parameter bathtub-shape lifetime distributions with different scale parameters, but having the same shape parameter. Different methods for estimating the reliability are applied. The maximum likelihood estimate of R is derived. Also, its asymptotic distribution is used to construct an asymptotic confidence interval for R. Assuming that the shape parameter is known, the maximum likelihood estimator of R is obtained. Based on the exact distribution of the maximum likelihood estimator of R an exact confidence interval of that has been obtained. The uniformly minimum variance unbiased estimator are calculated for R. Bayes estimate of R and the associated credible interval are also got under the assumption of independent gamma priors. Monte Carlo simulations are performed to compare the performances of the proposed estimators. One data analysis has been performed for illustrative purpose. Finally, we will generalize this distribution to the proportional hazard family with two parameters and derive various estimators in this family.  相似文献   

8.
Most of the long memory estimators for stationary fractionally integrated time series models are known to experience non‐negligible bias in small and finite samples. Simple moment estimators are also vulnerable to such bias, but can easily be corrected. In this article, the authors propose bias reduction methods for a lag‐one sample autocorrelation‐based moment estimator. In order to reduce the bias of the moment estimator, the authors explicitly obtain the exact bias of lag‐one sample autocorrelation up to the order n−1. An example where the exact first‐order bias can be noticeably more accurate than its asymptotic counterpart, even for large samples, is presented. The authors show via a simulation study that the proposed methods are promising and effective in reducing the bias of the moment estimator with minimal variance inflation. The proposed methods are applied to the northern hemisphere data. The Canadian Journal of Statistics 37: 476–493; 2009 © 2009 Statistical Society of Canada  相似文献   

9.

We consider a sieve bootstrap procedure to quantify the estimation uncertainty of long-memory parameters in stationary functional time series. We use a semiparametric local Whittle estimator to estimate the long-memory parameter. In the local Whittle estimator, discrete Fourier transform and periodogram are constructed from the first set of principal component scores via a functional principal component analysis. The sieve bootstrap procedure uses a general vector autoregressive representation of the estimated principal component scores. It generates bootstrap replicates that adequately mimic the dependence structure of the underlying stationary process. We first compute the estimated first set of principal component scores for each bootstrap replicate and then apply the semiparametric local Whittle estimator to estimate the memory parameter. By taking quantiles of the estimated memory parameters from these bootstrap replicates, we can nonparametrically construct confidence intervals of the long-memory parameter. As measured by coverage probability differences between the empirical and nominal coverage probabilities at three levels of significance, we demonstrate the advantage of using the sieve bootstrap compared to the asymptotic confidence intervals based on normality.

  相似文献   

10.
In this paper, we study the problem of testing the hypothesis on whether the density f of a random variable on a sphere belongs to a given parametric class of densities. We propose two test statistics based on the L2 and L1 distances between a non‐parametric density estimator adapted to circular data and a smoothed version of the specified density. The asymptotic distribution of the L2 test statistic is provided under the null hypothesis and contiguous alternatives. We also consider a bootstrap method to approximate the distribution of both test statistics. Through a simulation study, we explore the moderate sample performance of the proposed tests under the null hypothesis and under different alternatives. Finally, the procedure is illustrated by analysing a real data set based on wind direction measurements.  相似文献   

11.
In this article, we introduce the nonparametric kernel method starting with half-normal detection function using line transect sampling. The new method improves bias from O(h 2), as the smoothing parameter h → 0, to O(h 3) and in some cases to O(h 4). Properties of the proposed estimator are derived and an expression for the asymptotic mean square error (AMSE) of the estimator is given. Minimization of the AMSE leads to an explicit formula for an optimal choice of the smoothing parameter. Small-sample properties of the estimator are investigated and compared with the traditional kernel estimator by using simulation technique. A numerical results show that improvements over the traditional kernel estimator often can be realized even when the true detection function is far from the half-normal detection function.  相似文献   

12.
This article deals with the estimation of the stress-strength parameter R = P(Y < X) when X and Y are independent Lindley random variables with different shape parameters. The uniformly minimum variance unbiased estimator has explicit expression, however, its exact or asymptotic distribution is very difficult to obtain. The maximum likelihood estimator of the unknown parameter can also be obtained in explicit form. We obtain the asymptotic distribution of the maximum likelihood estimator and it can be used to construct confidence interval of R. Different parametric bootstrap confidence intervals are also proposed. Bayes estimator and the associated credible interval based on independent gamma priors on the unknown parameters are obtained using Monte Carlo methods. Different methods are compared using simulations and one data analysis has been performed for illustrative purposes.  相似文献   

13.
ABSTRACT

For monitoring systemic risk from regulators’ point of view, this article proposes a relative risk measure, which is sensitive to the market comovement. The asymptotic normality of a nonparametric estimator and its smoothed version is established when the observations are independent. To effectively construct an interval without complicated asymptotic variance estimation, a jackknife empirical likelihood inference procedure based on the smoothed nonparametric estimation is provided with a Wilks type of result in case of independent observations. When data follow from AR-GARCH models, the relative risk measure with respect to the errors becomes useful and so we propose a corresponding nonparametric estimator. A simulation study and real-life data analysis show that the proposed relative risk measure is useful in monitoring systemic risk.  相似文献   

14.
When two‐component parallel systems are tested, the data consist of Type‐II censored data X(i), i= 1, n, from one component, and their concomitants Y [i] randomly censored at X(r), the stopping time of the experiment. Marshall & Olkin's (1967) bivariate exponential distribution is used to illustrate statistical inference procedures developed for this data type. Although this data type is motivated practically, the likelihood is complicated, and maximum likelihood estimation is difficult, especially in the case where the parameter space is a non‐open set. An iterative algorithm is proposed for finding maximum likelihood estimates. This article derives several properties of the maximum likelihood estimator (MLE) including existence, uniqueness, strong consistency and asymptotic distribution. It also develops an alternative estimation method with closed‐form expressions based on marginal distributions, and derives its asymptotic properties. Compared with variances of the MLEs in the finite and large sample situations, the alternative estimator performs very well, especially when the correlation between X and Y is small.  相似文献   

15.
In this article, we study a goodness-of-fit (GOF) test in the presence of length-biased sampling. For this purpose, we introduce a smoothed estimator of distribution function (d.f.) and we investigate its asymptotic behaviors, such as uniform consistency and asymptotic normality. Based on this estimator, we define a one-sample Kolmogorov type of GOF test for length-biased data. We conduct Monte Carlo simulations to evaluate the performance of the proposed test statistic and compare it with the one-sample Kolmogorov type of GOF test obtained by the non smoothed estimator of d.f.  相似文献   

16.
Zhouping Li  Yang Wei 《Statistics》2018,52(5):1128-1155
Testing the Lorenz dominance is of importance in economic and social sciences. In this article, we propose new tools to do inferences for the difference of two Lorenz curves. The asymptotic normality of the proposed smoothed nonparametric estimator is proved. We also propose a smoothed jackknife empirical likelihood (JEL) method which avoids to estimate the complicate asymptotic variance. It is proved that the proposed JEL ratio statistics converge to the standard chi-square distribution. Simulation studies and real data analysis are also conducted, and show encouraging finite-sample performance.  相似文献   

17.
The mode of a distribution provides an important summary of data and is often estimated on the basis of some non‐parametric kernel density estimator. This article develops a new data analysis tool called modal linear regression in order to explore high‐dimensional data. Modal linear regression models the conditional mode of a response Y given a set of predictors x as a linear function of x . Modal linear regression differs from standard linear regression in that standard linear regression models the conditional mean (as opposed to mode) of Y as a linear function of x . We propose an expectation–maximization algorithm in order to estimate the regression coefficients of modal linear regression. We also provide asymptotic properties for the proposed estimator without the symmetric assumption of the error density. Our empirical studies with simulated data and real data demonstrate that the proposed modal regression gives shorter predictive intervals than mean linear regression, median linear regression and MM‐estimators.  相似文献   

18.
This article studies the estimation of the reliability R = P[Y < X] when X and Y come from two independent generalized logistic distributions of Type-II with different parameters, based on progressively Type-II censored samples. When the common scale parameter is unknown, the maximum likelihood estimator and its asymptotic distribution are proposed. The asymptotic distribution is used to construct an asymptotic confidence interval of R. Bayes estimator of R and the corresponding credible interval using the Gibbs sampling technique have been proposed too. Assuming that the common scale parameter is known, the maximum likelihood estimator, uniformly minimum variance unbiased estimator, Bayes estimation, and confidence interval of R are extracted. Monte Carlo simulations are performed to compare the different proposed methods. Analysis of a real dataset is given for illustrative purposes. Finally, methods are extended for proportional hazard rate models.  相似文献   

19.
The classical histogram method has already been applied in line transect sampling to estimate the parameter f(0), which in turns is used to estimate the population abundance D or the population size N. It is well know that the bias convergence rate for histogram estimator of f(0) is o(h2) as h → 0, under the shoulder condition assumption. If the shoulder condition is not true, then the bias convergence rate is only o(h). This paper proposed two new estimators for f(0), which can be considered as modifications of the classical histogram estimator. The first estimator is derived when the shoulder condition is assumed to be valid and it reduces the bias convergence rate from o(h2) to o(h3). The other one is constructed without using the shoulder condition assumption and it reduces the bias convergence rate from o(h) to o(h2). The asymptotic properties of the proposed estimators are derived and formulas for bin width are also given. The finite properties based on a real data set and an extensive simulation study demonstrated the potential practical use of the proposed estimators.  相似文献   

20.
A new procedure of shift parameter estimation in the two-sample location problem is investigated and compared with existing estimators. The proposed procedure smooths the empirical distribution functions of each random sample and replaces empirical distribution functions in the two-sample Kolmogorov–Smirnov method. The smoothed Kolmogorov–Smirnov is minimized with respect to an arbitrary shift variable in order to find an estimate of the shift parameter. The proposed procedure can be considered the smoothed version of a very little known method of shift parameter estimation from Rao-Schuster-Littell (RSL) [Rao et al., Estimation of shift and center of symmetry based on Kolmogorov–Smirnov statistics, Ann. Stat. 3(4) (1975), pp. 862–873]. Their estimator will be discussed and compared with the proposed estimator in this paper. An example and simulation studies have been performed to compare the proposed procedure with existing shift parameter estimators such as Hodges–Lehmann (H–L) and least squares in addition to RSL's estimator. The results show that the proposed estimator has lower mean-squared error as well as higher relative efficiency against RSL's estimator under normal or contaminated normal model assumptions. Moreover, the proposed estimator performs competitively against H–L and least-squares shift estimators. Smoother function and bandwidth selections are also discussed and several alternatives are proposed in the study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号