首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
This paper proposes a GMM estimation framework for the SAR model in a system of simultaneous equations with heteroskedastic disturbances. Besides linear moment conditions, the proposed GMM estimator also utilizes quadratic moment conditions based on the covariance structure of model disturbances within and across equations. Compared with the QML approach, the GMM estimator is easier to implement and robust under heteroskedasticity of unknown form. We derive the heteroskedasticity-robust standard error for the GMM estimator. Monte Carlo experiments show that the proposed GMM estimator performs well in finite samples.  相似文献   

2.
The high-dimensional data arises in diverse fields of sciences, engineering and humanities. Variable selection plays an important role in dealing with high dimensional statistical modelling. In this article, we study the variable selection of quadratic approximation via the smoothly clipped absolute deviation (SCAD) penalty with a diverging number of parameters. We provide a unified method to select variables and estimate parameters for various of high dimensional models. Under appropriate conditions and with a proper regularization parameter, we show that the estimator has consistency and sparsity, and the estimators of nonzero coefficients enjoy the asymptotic normality as they would have if the zero coefficients were known in advance. In addition, under some mild conditions, we can obtain the global solution of the penalized objective function with the SCAD penalty. Numerical studies and a real data analysis are carried out to confirm the performance of the proposed method.  相似文献   

3.
ABSTRACT

We study partial linear models where the linear covariates are endogenous and cause an over-identified problem. We propose combining the profile principle with local linear approximation and the generalized moment methods (GMM) to estimate the parameters of interest. We show that the profiled GMM estimators are root? n consistent and asymptotically normally distributed. By appropriately choosing the weight matrix, the estimators can attain the efficiency bound. We further consider variable selection by using the moment restrictions imposed on endogenous variables when the dimension of the covariates may be diverging with the sample size, and propose a penalized GMM procedure, which is shown to have the sparsity property. We establish asymptotic normality of the resulting estimators of the nonzero parameters. Simulation studies have been presented to assess the finite-sample performance of the proposed procedure.  相似文献   

4.
We consider the problem of variables selection and estimation in linear regression model in situations where the number of parameters diverges with the sample size. We propose the adaptive Generalized Ridge-Lasso (\mboxAdaGril) which is an extension of the the adaptive Elastic Net. AdaGril incorporates information redundancy among correlated variables for model selection and estimation. It combines the strengths of the quadratic regularization and the adaptively weighted Lasso shrinkage. In this article, we highlight the grouped selection property for AdaCnet method (one type of AdaGril) in the equal correlation case. Under weak conditions, we establish the oracle property of AdaGril which ensures the optimal large performance when the dimension is high. Consequently, it achieves both goals of handling the problem of collinearity in high dimension and enjoys the oracle property. Moreover, we show that AdaGril estimator achieves a Sparsity Inequality, i.e., a bound in terms of the number of non-zero components of the “true” regression coefficient. This bound is obtained under a similar weak Restricted Eigenvalue (RE) condition used for Lasso. Simulations studies show that some particular cases of AdaGril outperform its competitors.  相似文献   

5.
Model selection and estimation are crucial parts of econometrics. This article introduces a new technique that can simultaneously estimate and select the model in generalized method of moments (GMM) context. The GMM is particularly powerful for analyzing complex datasets such as longitudinal and panel data, and it has wide applications in econometrics. This article extends the least squares based adaptive elastic net estimator by Zou and Zhang to nonlinear equation systems with endogenous variables. The extension is not trivial and involves a new proof technique due to estimators’ lack of closed-form solutions. Compared to Bridge-GMM by Caner, we allow for the number of parameters to diverge to infinity as well as collinearity among a large number of variables; also, the redundant parameters are set to zero via a data-dependent technique. This method has the oracle property, meaning that we can estimate nonzero parameters with their standard limit and the redundant parameters are dropped from the equations simultaneously. Numerical examples are used to illustrate the performance of the new method.  相似文献   

6.
In this article, we provide some robust estimation of moments of the random effects and the errors in dynamic panel data models with potential intercorrelation. By differencing the residuals over the individual and time indies, we modify the popularly used Arellano-Bond GMM estimator of the parameter coefficient and study its asymptotic properties. Based on the modified parameter estimator, we construct, respectively, some moment estimators of the random effects and the errors with no affecting each other. Their asymptotic normalities are obtained under some mild conditions. The finite sample properties are investigated by a small Monte Carlo simulation experiment.  相似文献   

7.
We propose a thresholding generalized method of moments (GMM) estimator for misspecified time series moment condition models. This estimator has the following oracle property: its asymptotic behavior is the same as of any efficient GMM estimator obtained under the a priori information that the true model were known. We propose data adaptive selection methods for thresholding parameter using multiple testing procedures. We determine the limiting null distributions of classical parameter tests and show the consistency of the corresponding block-bootstrap tests used in conjunction with thresholding GMM inference. We present the results of a simulation study for a misspecified instrumental variable regression model and for a vector autoregressive model with measurement error. We illustrate an application of the proposed methodology to data analysis of a real-world dataset.  相似文献   

8.
We develop point-identification for the local average treatment effect when the binary treatment contains a measurement error. The standard instrumental variable estimator is inconsistent for the parameter since the measurement error is nonclassical by construction. We correct the problem by identifying the distribution of the measurement error based on the use of an exogenous variable that can even be a binary covariate. The moment conditions derived from the identification lead to generalized method of moments estimation with asymptotically valid inferences. Monte Carlo simulations and an empirical illustration demonstrate the usefulness of the proposed procedure.  相似文献   

9.
This paper considers the estimation of Cobb-Douglas production functions using panel data covering a large sample of companies observed for a small number of time periods. GMM estimatorshave been found to produce large finite-sample biases when using the standard first-differenced estimator. These biases can be dramatically reduced by exploiting reasonable stationarity restrictions on the initial conditions process. Using data for a panel of R&Dperforming US manufacturing companies we find that the additional instruments used in our extended GMM estimator yield much more reasonable parameter estimates.  相似文献   

10.
This paper considers the estimation of Cobb-Douglas production functions using panel data covering a large sample of companies observed for a small number of time periods. GMM estimatorshave been found to produce large finite-sample biases when using the standard first-differenced estimator. These biases can be dramatically reduced by exploiting reasonable stationarity restrictions on the initial conditions process. Using data for a panel of R&Dperforming US manufacturing companies we find that the additional instruments used in our extended GMM estimator yield much more reasonable parameter estimates.  相似文献   

11.
Graphs and networks are common ways of depicting information. In biology, many different biological processes are represented by graphs, such as regulatory networks, metabolic pathways and protein-protein interaction networks. This kind of a priori use of graphs is a useful supplement to the standard numerical data such as microarray gene expression data. In this paper, we consider the problem of regression analysis and variable selection when the covariates are linked on a graph. We study a graph-constrained regularization procedure and its theoretical properties for regression analysis to take into account the neighborhood information of the variables measured on a graph, where a smoothness penalty on the coefficients is defined as a quadratic form of the Laplacian matrix associated with the graph. We establish estimation and model selection consistency results and provide estimation bounds for both fixed and diverging numbers of parameters in regression models. We demonstrate by simulations and a real dataset that the proposed procedure can lead to better variable selection and prediction than existing methods that ignore the graph information associated with the covariates.  相似文献   

12.
Based on B-spline basis functions and smoothly clipped absolute deviation (SCAD) penalty, we present a new estimation and variable selection procedure based on modal regression for partially linear additive models. The outstanding merit of the new method is that it is robust against outliers or heavy-tail error distributions and performs no worse than the least-square-based estimation for normal error case. The main difference is that the standard quadratic loss is replaced by a kernel function depending on a bandwidth that can be automatically selected based on the observed data. With appropriate selection of the regularization parameters, the new method possesses the consistency in variable selection and oracle property in estimation. Finally, both simulation study and real data analysis are performed to examine the performance of our approach.  相似文献   

13.
We propose penalized minimum φ-divergence estimator for parameter estimation and variable selection in logistic regression. Using an appropriate penalty function, we show that penalized φ-divergence estimator has oracle property. With probability tending to 1, penalized φ-divergence estimator identifies the true model and estimates nonzero coefficients as efficiently as if the sparsity of the true model was known in advance. The advantage of penalized φ-divergence estimator is that it produces estimates of nonzero parameters efficiently than penalized maximum likelihood estimator when sample size is small and is equivalent to it for large one. Numerical simulations confirm our findings.  相似文献   

14.
In his 1999 article with Breusch, Qian, and Wyhowski in the Journal of Econometrics, Peter Schmidt introduced the concept of “redundant” moment conditions. Such conditions arise when estimation is based on moment conditions that are valid and can be divided into two subsets: one that identifies the parameters and another that provides no further information. Their framework highlights an important concept in the moment-based estimation literature, namely, that not all valid moment conditions need be informative about the parameters of interest. In this article, we demonstrate the empirical relevance of the concept in the context of the impact of government health expenditure on health outcomes in England. Using a simulation study calibrated to this data, we perform a comparative study of the finite performance of inference procedures based on the Generalized Method of Moment (GMM) and info-metric (IM) estimators. The results indicate that the properties of GMM procedures deteriorate as the number of redundant moment conditions increases; in contrast, the IM methods provide reliable point estimators, but the performance of associated inference techniques based on first order asymptotic theory, such as confidence intervals and overidentifying restriction tests, deteriorates as the number of redundant moment conditions increases. However, for IM methods, it is shown that bootstrap procedures can provide reliable inferences; we illustrate such methods when analysing the impact of government health expenditure on health outcomes in England.  相似文献   

15.
动态面板阈模型可以刻画经济变量动态调整过程的非对称性,在实证分析中有广泛的运用,但阈值参数的引入同时增加了参数估计的困难,理论上尚有许多问题没有解决。针对此类模型,本文提出了一种简单而实用的序贯两步估计方法,首先利用格点搜索获得阈值参数的一致估计,基于该参数对数据结构进行合理划分并引入不同类型的矩条件,然后利用广义矩方法获得自回归参数的估计。理论研究与模拟结果表明,序贯两步估计具有良好的大样本性质和有限样本表现;与现有文献的方法相比,序贯两步估计能够有效避免不同类型参数估计偏差的相互影响,减小估计量的偏差与均方根误差。  相似文献   

16.
In high throughput genomic studies, an important goal is to identify a small number of genomic markers that are associated with development and progression of diseases. A representative example is microarray prognostic studies, where the goal is to identify genes whose expressions are associated with disease free or overall survival. Because of the high dimensionality of gene expression data, standard survival analysis techniques cannot be directly applied. In addition, among the thousands of genes surveyed, only a subset are disease-associated. Gene selection is needed along with estimation. In this article, we model the relationship between gene expressions and survival using the accelerated failure time (AFT) models. We use the bridge penalization for regularized estimation and gene selection. An efficient iterative computational algorithm is proposed. Tuning parameters are selected using V-fold cross validation. We use a resampling method to evaluate the prediction performance of bridge estimator and the relative stability of identified genes. We show that the proposed bridge estimator is selection consistent under appropriate conditions. Analysis of two lymphoma prognostic studies suggests that the bridge estimator can identify a small number of genes and can have better prediction performance than the Lasso.  相似文献   

17.
Lasso is popularly used for variable selection in recent years. In this paper, lasso-type penalty functions including lasso and adaptive lasso are employed in simultaneously variable selection and parameter estimation for covariate-adjusted linear model, where the predictors and response cannot be observed directly and distorted by some observable covariate through some unknown multiplicative smooth functions. Estimation procedures are proposed and some asymptotic properties are obtained under some mild conditions. It deserves noting that under appropriate conditions, the adaptive lasso estimator correctly select covariates with nonzero coefficients with probability converging to one and that the estimators of nonzero coefficients have the same asymptotic distribution that they would have if the zero coefficients were known in advance, i.e. the adaptive lasso estimator has the oracle property in the sense of Fan and Li [6]. Simulation studies are carried out to examine its performance in finite sample situations and the Boston Housing data is analyzed for illustration.  相似文献   

18.
This paper compares least squares (LS)/maximum likelihood (ML) and generalised method of moments (GMM) estimation in a simple. Gaussian autoregressive of order one (AR(1)) model. First, we show that the usual LS/ML estimator is a corner solution to a general minimisation problem that involves two moment conditions, while the new GMM we devise is not. Secondly, we examine asymptotic and finite sample properties of the new GMM estimator in comparison to the usual LS/ML estimator in a simple AR(1) model. For both stable and unstable (unit root) specifications, we show asymptotic equivalence of the distributions of the two estimators. However, in finite samples, the new GMM estimator performs better.  相似文献   

19.
A new regularization method for regression models is proposed. The criterion to be minimized contains a penalty term which explicitly links strength of penalization to the correlation between predictors. Like the elastic net, the method encourages a grouping effect where strongly correlated predictors tend to be in or out of the model together. A boosted version of the penalized estimator, which is based on a new boosting method, allows to select variables. Real world data and simulations show that the method compares well to competing regularization techniques. In settings where the number of predictors is smaller than the number of observations it frequently performs better than competitors, in high dimensional settings prediction measures favor the elastic net while accuracy of estimation and stability of variable selection favors the newly proposed method.  相似文献   

20.
In this article, we examine the limiting behavior of generalized method of moments (GMM) sample moment conditions and point out an important discontinuity that arises in their asymptotic distribution. We show that the part of the scaled sample moment conditions that gives rise to degeneracy in the asymptotic normal distribution is T-consistent and has a nonstandard limiting distribution. We derive the appropriate asymptotic (weighted chi-squared) distribution when this degeneracy occurs and show how to conduct asymptotically valid statistical inference. We also propose a new rank test that provides guidance on which (standard or nonstandard) asymptotic framework should be used for inference. The finite-sample properties of the proposed asymptotic approximation are demonstrated using simulated data from some popular asset pricing models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号