首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Non-Gaussian processes of Ornstein–Uhlenbeck (OU) type offer the possibility of capturing important distributional deviations from Gaussianity and for flexible modelling of dependence structures. This paper develops this potential, drawing on and extending powerful results from probability theory for applications in statistical analysis. Their power is illustrated by a sustained application of OU processes within the context of finance and econometrics. We construct continuous time stochastic volatility models for financial assets where the volatility processes are superpositions of positive OU processes, and we study these models in relation to financial data and theory.  相似文献   

2.
This paper develops a novel and efficient algorithm for Bayesian inference in inverse Gamma stochastic volatility models. It is shown that by conditioning on auxiliary variables, it is possible to sample all the volatilities jointly directly from their posterior conditional density, using simple and easy to draw from distributions. Furthermore, this paper develops a generalized inverse gamma process with more flexible tails in the distribution of volatilities, which still allows for simple and efficient calculations. Using several macroeconomic and financial datasets, it is shown that the inverse gamma and generalized inverse gamma processes can greatly outperform the commonly used log normal volatility processes with Student’s t errors or jumps in the mean equation.  相似文献   

3.
Abstract. In this paper, we study the detailed distributional properties of integrated non-Gaussian Ornstein–Uhlenbeck (intOU) processes. Both exact and approximate results are given. We emphasize the study of the tail behaviour of the intOU process. Our results have many potential applications in financial economics, as OU processes are used as models of instantaneous variance in stochastic volatility (SV) models. In this case, an intOU process can be regarded as a model of integrated variance. Hence, the tail behaviour of the intOU process will determine the tail behaviour of returns generated by SV models.  相似文献   

4.
An Ornstein–Uhlenbeck (OU) process is employed as a versatile model to capture the mean-reverting and stochastic evolution of many variables in various fields of applications including finance and economics. Within the OU setting, we develop a new estimation method to determine the unknown change-point location under the assumption that the volatilities before and after the change point in a time series are unequal. Our method hinges on the concept of a weighted least sum of squared errors approach and enhanced by a fusion of an iterative algorithm. The consistency of the change-point estimator is established. This article highlights a numerical implementation on simulated and observed financial market data demonstrating the significant flexibility and accuracy of our proposed modelling and estimation method. The Canadian Journal of Statistics 48: 62–78; 2020 © 2019 Statistical Society of Canada  相似文献   

5.
We compare results for stochastic volatility models where the underlying volatility process having generalized inverse Gaussian (GIG) and tempered stable marginal laws. We use a continuous time stochastic volatility model where the volatility follows an Ornstein–Uhlenbeck stochastic differential equation driven by a Lévy process. A model for long-range dependence is also considered, its merit and practical relevance discussed. We find that the full GIG and a special case, the inverse gamma, marginal distributions accurately fit real data. Inference is carried out in a Bayesian framework, with computation using Markov chain Monte Carlo (MCMC). We develop an MCMC algorithm that can be used for a general marginal model.  相似文献   

6.
Multi-asset modelling is of fundamental importance to financial applications such as risk management and portfolio selection. In this article, we propose a multivariate stochastic volatility modelling framework with a parsimonious and interpretable correlation structure. Building on well-established evidence of common volatility factors among individual assets, we consider a multivariate diffusion process with a common-factor structure in the volatility innovations. Upon substituting an observable market proxy for the common volatility factor, we markedly improve the estimation of several model parameters and latent volatilities. The model is applied to a portfolio of several important constituents of the S&P500 in the financial sector, with the VIX index as the common-factor proxy. We find that the prediction intervals for asset forecasts are comparable to those of more complex dependence models, but that option-pricing uncertainty can be greatly reduced by adopting a common-volatility structure. The Canadian Journal of Statistics 48: 36–61; 2020 © 2020 Statistical Society of Canada  相似文献   

7.
Summary. The availability of intraday data on the prices of speculative assets means that we can use quadratic variation-like measures of activity in financial markets, called realized volatility, to study the stochastic properties of returns. Here, under the assumption of a rather general stochastic volatility model, we derive the moments and the asymptotic distribution of the realized volatility error—the difference between realized volatility and the discretized integrated volatility (which we call actual volatility). These properties can be used to allow us to estimate the parameters of stochastic volatility models without recourse to the use of simulation-intensive methods.  相似文献   

8.
The GARCH and stochastic volatility (SV) models are two competing, well-known and often used models to explain the volatility of financial series. In this paper, we consider a closed form estimator for a stochastic volatility model and derive its asymptotic properties. We confirm our theoretical results by a simulation study. In addition, we propose a set of simple, strongly consistent decision rules to compare the ability of the GARCH and the SV model to fit the characteristic features observed in high frequency financial data such as high kurtosis and slowly decaying autocorrelation function of the squared observations. These rules are based on a number of moment conditions that is allowed to increase with sample size. We show that our selection procedure leads to choosing the model that fits best, or the simplest model under equivalence, with probability one as the sample size increases. The finite sample size behavior of our procedure is analyzed via simulations. Finally, we provide an application to stocks in the Dow Jones industrial average index.  相似文献   

9.
Risks are usually represented and measured by volatility–covolatility matrices. Wishart processes are models for a dynamic analysis of multivariate risk and describe the evolution of stochastic volatility–covolatility matrices, constrained to be symmetric positive definite. The autoregressive Wishart process (WAR) is the multivariate extension of the Cox, Ingersoll, Ross (CIR) process introduced for scalar stochastic volatility. As a CIR process it allows for closed-form solutions for a number of financial problems, such as term structure of T-bonds and corporate bonds, derivative pricing in a multivariate stochastic volatility model, and the structural model for credit risk. Moreover, the Wishart dynamics are very flexible and are serious competitors for less structural multivariate ARCH models.  相似文献   

10.
Although both widely used in the financial industry, there is quite often very little justification why GARCH or stochastic volatility is preferred over the other in practice. Most of the relevant literature focuses on the comparison of the fit of various volatility models to a particular data set, which sometimes may be inconclusive due to the statistical similarities of both processes. With an ever growing interest among the financial industry in the risk of extreme price movements, it is natural to consider the selection between both models from an extreme value perspective. By studying the dependence structure of the extreme values of a given series, we are able to clearly distinguish GARCH and stochastic volatility models and to test statistically which one better captures the observed tail behaviour. We illustrate the performance of the method using some stock market returns and find that different volatility models may give a better fit to the upper or lower tails.  相似文献   

11.
Continuous non-Gaussian stationary processes of the OU-type are becoming increasingly popular given their flexibility in modelling stylized features of financial series such as asymmetry, heavy tails and jumps. The use of non-Gaussian marginal distributions makes likelihood analysis of these processes unfeasible for virtually all cases of interest. This paper exploits the self-decomposability of the marginal laws of OU processes to provide explicit expressions of the characteristic function which can be applied to several models as well as to develop efficient estimation techniques based on the empirical characteristic function. Extensions to OU-based stochastic volatility models are provided.  相似文献   

12.
Time-varying parameter models with stochastic volatility are widely used to study macroeconomic and financial data. These models are almost exclusively estimated using Bayesian methods. A common practice is to focus on prior distributions that themselves depend on relatively few hyperparameters such as the scaling factor for the prior covariance matrix of the residuals governing time variation in the parameters. The choice of these hyperparameters is crucial because their influence is sizeable for standard sample sizes. In this article, we treat the hyperparameters as part of a hierarchical model and propose a fast, tractable, easy-to-implement, and fully Bayesian approach to estimate those hyperparameters jointly with all other parameters in the model. We show via Monte Carlo simulations that, in this class of models, our approach can drastically improve on using fixed hyperparameters previously proposed in the literature. Supplementary materials for this article are available online.  相似文献   

13.
The general pattern of estimated volatilities of macroeconomic and financial variables is often broadly similar. We propose two models in which conditional volatilities feature comovement and study them using U.S. macroeconomic data. The first model specifies the conditional volatilities as driven by a single common unobserved factor, plus an idiosyncratic component. We label this model BVAR with general factor stochastic volatility (BVAR-GFSV) and we show that the loss in terms of marginal likelihood from assuming a common factor for volatility is moderate. The second model, which we label BVAR with common stochastic volatility (BVAR-CSV), is a special case of the BVAR-GFSV in which the idiosyncratic component is eliminated and the loadings to the factor are set to 1 for all the conditional volatilities. Such restrictions permit a convenient Kronecker structure for the posterior variance of the VAR coefficients, which in turn permits estimating the model even with large datasets. While perhaps misspecified, the BVAR-CSV model is strongly supported by the data when compared against standard homoscedastic BVARs, and it can produce relatively good point and density forecasts by taking advantage of the information contained in large datasets.  相似文献   

14.
We discuss the development of dynamic factor models for multivariate financial time series, and the incorporation of stochastic volatility components for latent factor processes. Bayesian inference and computation is developed and explored in a study of the dynamic factor structure of daily spot exchange rates for a selection of international currencies. The models are direct generalizations of univariate stochastic volatility models and represent specific varieties of models recently discussed in the growing multivariate stochastic volatility literature. We discuss model fitting based on retrospective data and sequential analysis for forward filtering and short-term forecasting. Analyses are compared with results from the much simpler method of dynamic variance-matrix discounting that, for over a decade, has been a standard approach in applied financial econometrics. We study these models in analysis, forecasting, and sequential portfolio allocation for a selected set of international exchange-rate-return time series. Our goals are to understand a range of modeling questions arising in using these factor models and to explore empirical performance in portfolio construction relative to discount approaches. We report on our experiences and conclude with comments about the practical utility of structured factor models and on future potential model extensions.  相似文献   

15.
In considering volatility as a stochastic, the aim of this paper is to estimate the four parameters related to a particular stochastic process named P1 and based on a Wiener–Levy process. We present the methodology to estimate its four parameters. We calibrate this theoretical model P1 to the CAC 40 index real data. In the same time, we test the normality of the random variables related to the two Wiener–Levy processes. The calibration is performed using the implemented aforesaid algorithm. We compare the stochastic process P1 with another process named P2 and to the Heston [Closed form solution for options with stochastic volatility with application to bonds and currency options, Rev. Financ. Stud. 6(2) (1993), pp. 327–343] process named H0 and to two other improved Heston processes named H1 and H2. For the empirical study, the same algorithm is used to calibrate the five processes. The calibration is based on a database including the CAC 40 index daily ‘closing fixing’ values for the time period from 3rd January 2005 to 22nd January 2007. The data are divided into 18 classes relative to 18 different contracts of European calls on the CAC 40 index. As a result, we find that, the normality test of the CAC 40 index is rejected which is in accordance with the previous original works dealing with this problem. For the five volatility processes, the normality test is verified almost for the same contracts. We also find that according to the used data, the process P1 and its equivalent H1 are the best for calibration.  相似文献   

16.
为了更准确地揭示金融资产收益率数据的真实数据生成过程,提出了基于混合贝塔分布的随机波动模型,讨论了混合贝塔分布随机波动模型的贝叶斯估计方法,并给出了一种Gibbs抽样算法。以上证A股综指简单收益率为例,分别建立了基于正态分布和混合贝塔分布的随机波动模型,研究表明,基于混合贝塔分布的随机波动模型更准确地描述了样本数据的真实数据生成过程,而正态分布的随机波动模型将高峰厚尾等现象归结为波动冲击,从而低估了收益率的平均波动水平,高估了波动的持续性和波动的冲击扰动。  相似文献   

17.
Autoregressive models with switching regime are a frequently used class of nonlinear time series models, which are popular in finance, engineering, and other fields. We consider linear switching autoregressions in which the intercept and variance possibly switch simultaneously, while the autoregressive parameters are structural and hence the same in all states, and we propose quasi‐likelihood‐based tests for a regime switch in this class of models. Our motivation is from financial time series, where one expects states with high volatility and low mean together with states with low volatility and higher mean. We investigate the performance of our tests in a simulation study, and give an application to a series of IBM monthly stock returns. The Canadian Journal of Statistics 40: 427–446; 2012 © 2012 Statistical Society of Canada  相似文献   

18.
To capture mean and variance asymmetries and time‐varying volatility in financial time series, we generalize the threshold stochastic volatility (THSV) model and incorporate a heavy‐tailed error distribution. Unlike existing stochastic volatility models, this model simultaneously accounts for uncertainty in the unobserved threshold value and in the time‐delay parameter. Self‐exciting and exogenous threshold variables are considered to investigate the impact of a number of market news variables on volatility changes. Adopting a Bayesian approach, we use Markov chain Monte Carlo methods to estimate all unknown parameters and latent variables. A simulation experiment demonstrates good estimation performance for reasonable sample sizes. In a study of two international financial market indices, we consider two variants of the generalized THSV model, with US market news as the threshold variable. Finally, we compare models using Bayesian forecasting in a value‐at‐risk (VaR) study. The results show that our proposed model can generate more accurate VaR forecasts than can standard models.  相似文献   

19.
Summary.  When modelling multivariate financial data, the problem of structural learning is compounded by the fact that the covariance structure changes with time. Previous work has focused on modelling those changes by using multivariate stochastic volatility models. We present an alternative to these models that focuses instead on the latent graphical structure that is related to the precision matrix. We develop a graphical model for sequences of Gaussian random vectors when changes in the underlying graph occur at random times, and a new block of data is created with the addition or deletion of an edge. We show how a Bayesian hierarchical model incorporates both the uncertainty about that graph and the time variation thereof.  相似文献   

20.
In modelling financial return time series and time-varying volatility, the Gaussian and the Student-t distributions are widely used in stochastic volatility (SV) models. However, other distributions such as the Laplace distribution and generalized error distribution (GED) are also common in SV modelling. Therefore, this paper proposes the use of the generalized t (GT) distribution whose special cases are the Gaussian distribution, Student-t distribution, Laplace distribution and GED. Since the GT distribution is a member of the scale mixture of uniform (SMU) family of distribution, we handle the GT distribution via its SMU representation. We show this SMU form can substantially simplify the Gibbs sampler for Bayesian simulation-based computation and can provide a mean of identifying outliers. In an empirical study, we adopt a GT–SV model to fit the daily return of the exchange rate of Australian dollar to three other currencies and use the exchange rate to US dollar as a covariate. Model implementation relies on Bayesian Markov chain Monte Carlo algorithms using the WinBUGS package.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号