首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
As the treatments of cancer progress, a certain number of cancers are curable if diagnosed early. In population‐based cancer survival studies, cure is said to occur when mortality rate of the cancer patients returns to the same level as that expected for the general cancer‐free population. The estimates of cure fraction are of interest to both cancer patients and health policy makers. Mixture cure models have been widely used because the model is easy to interpret by separating the patients into two distinct groups. Usually parametric models are assumed for the latent distribution for the uncured patients. The estimation of cure fraction from the mixture cure model may be sensitive to misspecification of latent distribution. We propose a Bayesian approach to mixture cure model for population‐based cancer survival data, which can be extended to county‐level cancer survival data. Instead of modeling the latent distribution by a fixed parametric distribution, we use a finite mixture of the union of the lognormal, loglogistic, and Weibull distributions. The parameters are estimated using the Markov chain Monte Carlo method. Simulation study shows that the Bayesian method using a finite mixture latent distribution provides robust inference of parameter estimates. The proposed Bayesian method is applied to relative survival data for colon cancer patients from the Surveillance, Epidemiology, and End Results (SEER) Program to estimate the cure fractions. The Canadian Journal of Statistics 40: 40–54; 2012 © 2012 Statistical Society of Canada  相似文献   

2.
The authors propose a novel class of cure rate models for right‐censored failure time data. The class is formulated through a transformation on the unknown population survival function. It includes the mixture cure model and the promotion time cure model as two special cases. The authors propose a general form of the covariate structure which automatically satisfies an inherent parameter constraint and includes the corresponding binomial and exponential covariate structures in the two main formulations of cure models. The proposed class provides a natural link between the mixture and the promotion time cure models, and it offers a wide variety of new modelling structures as well. Within the Bayesian paradigm, a Markov chain Monte Carlo computational scheme is implemented for sampling from the full conditional distributions of the parameters. Model selection is based on the conditional predictive ordinate criterion. The use of the new class of models is illustrated with a set of real data involving a melanoma clinical trial.  相似文献   

3.
Two-component mixture cure rate model is popular in cure rate data analysis with the proportional hazards and accelerated failure time (AFT) models being the major competitors for modelling the latency component. [Wang, L., Du, P., and Liang, H. (2012), ‘Two-Component Mixture Cure Rate Model with Spline Estimated Nonparametric Components’, Biometrics, 68, 726–735] first proposed a nonparametric mixture cure rate model where the latency component assumes proportional hazards with nonparametric covariate effects in the relative risk. Here we consider a mixture cure rate model where the latency component assumes AFTs with nonparametric covariate effects in the acceleration factor. Besides the more direct physical interpretation than the proportional hazards, our model has an additional scalar parameter which adds more complication to the computational algorithm as well as the asymptotic theory. We develop a penalised EM algorithm for estimation together with confidence intervals derived from the Louis formula. Asymptotic convergence rates of the parameter estimates are established. Simulations and the application to a melanoma study shows the advantages of our new method.  相似文献   

4.
In this article, for the first time, we propose the negative binomial–beta Weibull (BW) regression model for studying the recurrence of prostate cancer and to predict the cure fraction for patients with clinically localized prostate cancer treated by open radical prostatectomy. The cure model considers that a fraction of the survivors are cured of the disease. The survival function for the population of patients can be modeled by a cure parametric model using the BW distribution. We derive an explicit expansion for the moments of the recurrence time distribution for the uncured individuals. The proposed distribution can be used to model survival data when the hazard rate function is increasing, decreasing, unimodal and bathtub shaped. Another advantage is that the proposed model includes as special sub-models some of the well-known cure rate models discussed in the literature. We derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes. We analyze a real data set for localized prostate cancer patients after open radical prostatectomy.  相似文献   

5.
Mixture cure models are widely used when a proportion of patients are cured. The proportional hazards mixture cure model and the accelerated failure time mixture cure model are the most popular models in practice. Usually the expectation–maximisation (EM) algorithm is applied to both models for parameter estimation. Bootstrap methods are used for variance estimation. In this paper we propose a smooth semi‐nonparametric (SNP) approach in which maximum likelihood is applied directly to mixture cure models for parameter estimation. The variance can be estimated by the inverse of the second derivative of the SNP likelihood. A comprehensive simulation study indicates good performance of the proposed method. We investigate stage effects in breast cancer by applying the proposed method to breast cancer data from the South Carolina Cancer Registry.  相似文献   

6.
Abstract.  We propose a Bayesian semiparametric model for survival data with a cure fraction. We explicitly consider a finite cure time in the model, which allows us to separate the cured and the uncured populations. We take a mixture prior of a Markov gamma process and a point mass at zero to model the baseline hazard rate function of the entire population. We focus on estimating the cure threshold after which subjects are considered cured. We can incorporate covariates through a structure similar to the proportional hazards model and allow the cure threshold also to depend on the covariates. For illustration, we undertake simulation studies and a full Bayesian analysis of a bone marrow transplant data set.  相似文献   

7.
We present a mixture cure model with the survival time of the "uncured" group coming from a class of linear transformation models, which is an extension of the proportional odds model. This class of model, first proposed by Dabrowska and Doksum (1988), which we term "generalized proportional odds model," is well suited for the mixture cure model setting due to a clear separation between long-term and short-term effects. A standard expectation-maximization algorithm can be employed to locate the nonparametric maximum likelihood estimators, which are shown to be consistent and semiparametric efficient. However, there are difficulties in the M-step due to the nonparametric component. We overcome these difficulties by proposing two different algorithms. The first is to employ an majorize-minimize (MM) algorithm in the M-step instead of the usual Newton-Raphson method, and the other is based on an alternative form to express the model as a proportional hazards frailty model. The two new algorithms are compared in a simulation study with an existing estimating equation approach by Lu and Ying (2004). The MM algorithm provides both computational stability and efficiency. A case study of leukemia data is conducted to illustrate the proposed procedures.  相似文献   

8.
Shi  Yushu  Laud  Purushottam  Neuner  Joan 《Lifetime data analysis》2021,27(1):156-176

In this paper, we first propose a dependent Dirichlet process (DDP) model using a mixture of Weibull models with each mixture component resembling a Cox model for survival data. We then build a Dirichlet process mixture model for competing risks data without regression covariates. Next we extend this model to a DDP model for competing risks regression data by using a multiplicative covariate effect on subdistribution hazards in the mixture components. Though built on proportional hazards (or subdistribution hazards) models, the proposed nonparametric Bayesian regression models do not require the assumption of constant hazard (or subdistribution hazard) ratio. An external time-dependent covariate is also considered in the survival model. After describing the model, we discuss how both cause-specific and subdistribution hazard ratios can be estimated from the same nonparametric Bayesian model for competing risks regression. For use with the regression models proposed, we introduce an omnibus prior that is suitable when little external information is available about covariate effects. Finally we compare the models’ performance with existing methods through simulations. We also illustrate the proposed competing risks regression model with data from a breast cancer study. An R package “DPWeibull” implementing all of the proposed methods is available at CRAN.

  相似文献   

9.
In longitudinal studies, an individual may potentially undergo a series of repeated recurrence events. The gap times, which are referred to as the times between successive recurrent events, are typically the outcome variables of interest. Various regression models have been developed in order to evaluate covariate effects on gap times based on recurrence event data. The proportional hazards model, additive hazards model, and the accelerated failure time model are all notable examples. Quantile regression is a useful alternative to the aforementioned models for survival analysis since it can provide great flexibility to assess covariate effects on the entire distribution of the gap time. In order to analyze recurrence gap time data, we must overcome the problem of the last gap time subjected to induced dependent censoring, when numbers of recurrent events exceed one time. In this paper, we adopt the Buckley–James-type estimation method in order to construct a weighted estimation equation for regression coefficients under the quantile model, and develop an iterative procedure to obtain the estimates. We use extensive simulation studies to evaluate the finite-sample performance of the proposed estimator. Finally, analysis of bladder cancer data is presented as an illustration of our proposed methodology.  相似文献   

10.
Several survival regression models have been developed to assess the effects of covariates on failure times. In various settings, including surveys, clinical trials and epidemiological studies, missing data may often occur due to incomplete covariate data. Most existing methods for lifetime data are based on the assumption of missing at random (MAR) covariates. However, in many substantive applications, it is important to assess the sensitivity of key model inferences to the MAR assumption. The index of sensitivity to non-ignorability (ISNI) is a local sensitivity tool to measure the potential sensitivity of key model parameters to small departures from the ignorability assumption, needless of estimating a complicated non-ignorable model. We extend this sensitivity index to evaluate the impact of a covariate that is potentially missing, not at random in survival analysis, using parametric survival models. The approach will be applied to investigate the impact of missing tumor grade on post-surgical mortality outcomes in individuals with pancreas-head cancer in the Surveillance, Epidemiology, and End Results data set. For patients suffering from cancer, tumor grade is an important risk factor. Many individuals in these data with pancreas-head cancer have missing tumor grade information. Our ISNI analysis shows that the magnitude of effect for most covariates (with significant effect on the survival time distribution), specifically surgery and tumor grade as some important risk factors in cancer studies, highly depends on the missing mechanism assumption of the tumor grade. Also a simulation study is conducted to evaluate the performance of the proposed index in detecting sensitivity of key model parameters.  相似文献   

11.
In the analysis of competing risks data, cumulative incidence function is a useful summary of the overall crude risk for a failure type of interest. Mixture regression modeling has served as a natural approach to performing covariate analysis based on this quantity. However, existing mixture regression methods with competing risks data either impose parametric assumptions on the conditional risks or require stringent censoring assumptions. In this article, we propose a new semiparametric regression approach for competing risks data under the usual conditional independent censoring mechanism. We establish the consistency and asymptotic normality of the resulting estimators. A simple resampling method is proposed to approximate the distribution of the estimated parameters and that of the predicted cumulative incidence functions. Simulation studies and an analysis of a breast cancer dataset demonstrate that our method performs well with realistic sample sizes and is appropriate for practical use.  相似文献   

12.
We propose methods for Bayesian inference for missing covariate data with a novel class of semi-parametric survival models with a cure fraction. We allow the missing covariates to be either categorical or continuous and specify a parametric distribution for the covariates that is written as a sequence of one dimensional conditional distributions. We assume that the missing covariates are missing at random (MAR) throughout. We propose an informative class of joint prior distributions for the regression coefficients and the parameters arising from the covariate distributions. The proposed class of priors are shown to be useful in recovering information on the missing covariates especially in situations where the missing data fraction is large. Properties of the proposed prior and resulting posterior distributions are examined. Also, model checking techniques are proposed for sensitivity analyses and for checking the goodness of fit of a particular model. Specifically, we extend the Conditional Predictive Ordinate (CPO) statistic to assess goodness of fit in the presence of missing covariate data. Computational techniques using the Gibbs sampler are implemented. A real data set involving a melanoma cancer clinical trial is examined to demonstrate the methodology.  相似文献   

13.
When the subjects in a study possess different demographic and disease characteristics and are exposed to more than one types of failure, a practical problem is to assess the covariate effects on each type of failure as well as on all-cause failure. The most widely used method is to employ the Cox models on each cause-specific hazard and the all-cause hazard. It has been pointed out that this method causes the problem of internal inconsistency. To solve such a problem, the additive hazard models have been advocated. In this paper, we model each cause-specific hazard with the additive hazard model that includes both constant and time-varying covariate effects. We illustrate that the covariate effect on all-cause failure can be estimated by the sum of the effects on all competing risks. Using data from a longitudinal study on breast cancer patients, we show that the proposed method gives simple interpretation of the final results, when the primary covariate effect is constant in the additive manner on each cause-specific hazard. Based on the given additive models on the cause-specific hazards, we derive the inferences for the adjusted survival and cumulative incidence functions.  相似文献   

14.
The authors describe a method for fitting failure time mixture models that postulate the existence of both susceptibles and long‐term survivors when covariate data are only partially observed. Their method is based on a joint model that combines a Weibull regression model for the susceptibles, a logistic regression model for the probability of being a susceptible, and a general location model for the distribution of the covariates. A Bayesian approach is taken, and Gibbs sampling is used to fit the model to the incomplete data. An application to clinical data on tonsil cancer and a small Monte Carlo study indicate potential large gains in efficiency over standard complete‐case analysis as well as reasonable performance in a variety of situations.  相似文献   

15.
Summary.  The cure fraction (the proportion of patients who are cured of disease) is of interest to both patients and clinicians and is a useful measure to monitor trends in survival of curable disease. The paper extends the non-mixture and mixture cure fraction models to estimate the proportion cured of disease in population-based cancer studies by incorporating a finite mixture of two Weibull distributions to provide more flexibility in the shape of the estimated relative survival or excess mortality functions. The methods are illustrated by using public use data from England and Wales on survival following diagnosis of cancer of the colon where interest lies in differences between age and deprivation groups. We show that the finite mixture approach leads to improved model fit and estimates of the cure fraction that are closer to the empirical estimates. This is particularly so in the oldest age group where the cure fraction is notably lower. The cure fraction is broadly similar in each deprivation group, but the median survival of the 'uncured' is lower in the more deprived groups. The finite mixture approach overcomes some of the limitations of the more simplistic cure models and has the potential to model the complex excess hazard functions that are seen in real data.  相似文献   

16.
In biomedical studies, it is of substantial interest to develop risk prediction scores using high-dimensional data such as gene expression data for clinical endpoints that are subject to censoring. In the presence of well-established clinical risk factors, investigators often prefer a procedure that also adjusts for these clinical variables. While accelerated failure time (AFT) models are a useful tool for the analysis of censored outcome data, it assumes that covariate effects on the logarithm of time-to-event are linear, which is often unrealistic in practice. We propose to build risk prediction scores through regularized rank estimation in partly linear AFT models, where high-dimensional data such as gene expression data are modeled linearly and important clinical variables are modeled nonlinearly using penalized regression splines. We show through simulation studies that our model has better operating characteristics compared to several existing models. In particular, we show that there is a non-negligible effect on prediction as well as feature selection when nonlinear clinical effects are misspecified as linear. This work is motivated by a recent prostate cancer study, where investigators collected gene expression data along with established prognostic clinical variables and the primary endpoint is time to prostate cancer recurrence. We analyzed the prostate cancer data and evaluated prediction performance of several models based on the extended c statistic for censored data, showing that 1) the relationship between the clinical variable, prostate specific antigen, and the prostate cancer recurrence is likely nonlinear, i.e., the time to recurrence decreases as PSA increases and it starts to level off when PSA becomes greater than 11; 2) correct specification of this nonlinear effect improves performance in prediction and feature selection; and 3) addition of gene expression data does not seem to further improve the performance of the resultant risk prediction scores.  相似文献   

17.
A cure rate model is a survival model incorporating the cure rate with the assumption that the population contains both uncured and cured individuals. It is a powerful statistical tool for prognostic studies, especially in cancer. The cure rate is important for making treatment decisions in clinical practice. The proportional hazards (PH) cure model can predict the cure rate for each patient. This contains a logistic regression component for the cure rate and a Cox regression component to estimate the hazard for uncured patients. A measure for quantifying the predictive accuracy of the cure rate estimated by the Cox PH cure model is required, as there has been a lack of previous research in this area. We used the Cox PH cure model for the breast cancer data; however, the area under the receiver operating characteristic curve (AUC) could not be estimated because many patients were censored. In this study, we used imputation‐based AUCs to assess the predictive accuracy of the cure rate from the PH cure model. We examined the precision of these AUCs using simulation studies. The results demonstrated that the imputation‐based AUCs were estimable and their biases were negligibly small in many cases, although ordinary AUC could not be estimated. Additionally, we introduced the bias‐correction method of imputation‐based AUCs and found that the bias‐corrected estimate successfully compensated the overestimation in the simulation studies. We also illustrated the estimation of the imputation‐based AUCs using breast cancer data. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
In statistical modelling, it is often of interest to evaluate non‐negative quantities that capture heterogeneity in the population such as variances, mixing proportions and dispersion parameters. In instances of covariate‐dependent heterogeneity, the implied homogeneity hypotheses are nonstandard and existing inferential techniques are not applicable. In this paper, we develop a quasi‐score test statistic to evaluate homogeneity against heterogeneity that varies with a covariate profile through a regression model. We establish the limiting null distribution of the proposed test as a functional of mixtures of chi‐square processes. The methodology does not require the full distribution of the data to be entirely specified. Instead, a general estimating function for a finite dimensional component of the model, that is, of interest is assumed but other characteristics of the population are left completely unspecified. We apply the methodology to evaluate the excess zero proportion in zero‐inflated models for count data. Our numerical simulations show that the proposed test can greatly improve efficiency over tests of homogeneity that neglect covariate information under the alternative hypothesis. An empirical application to dental caries indices demonstrates the importance and practical utility of the methodology in detecting excess zeros in the data.  相似文献   

19.
Historically, the cure rate model has been used for modeling time-to-event data within which a significant proportion of patients are assumed to be cured of illnesses, including breast cancer, non-Hodgkin lymphoma, leukemia, prostate cancer, melanoma, and head and neck cancer. Perhaps the most popular type of cure rate model is the mixture model introduced by Berkson and Gage [1]. In this model, it is assumed that a certain proportion of the patients are cured, in the sense that they do not present the event of interest during a long period of time and can found to be immune to the cause of failure under study. In this paper, we propose a general hazard model which accommodates comprehensive families of cure rate models as particular cases, including the model proposed by Berkson and Gage. The maximum-likelihood-estimation procedure is discussed. A simulation study analyzes the coverage probabilities of the asymptotic confidence intervals for the parameters. A real data set on children exposed to HIV by vertical transmission illustrates the methodology.  相似文献   

20.
Clustered interval‐censored survival data are often encountered in clinical and epidemiological studies due to geographic exposures and periodic visits of patients. When a nonnegligible cured proportion exists in the population, several authors in recent years have proposed to use mixture cure models incorporating random effects or frailties to analyze such complex data. However, the implementation of the mixture cure modeling approaches may be cumbersome. Interest then lies in determining whether or not it is necessary to adjust the cured proportion prior to the mixture cure analysis. This paper mainly focuses on the development of a score for testing the presence of cured subjects in clustered and interval‐censored survival data. Through simulation, we evaluate the sampling distribution and power behaviour of the score test. A bootstrap approach is further developed, leading to more accurate significance levels and greater power in small sample situations. We illustrate applications of the test using data sets from a smoking cessation study and a retrospective study of early breast cancer patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号