首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
ABSTRACT

A generally weighted moving average (GWMA) control chart with fast initial response (FIR) features is addressed to monitor an autoregressive process mean shift. Numerical simulations based on average run length (ARL) show that the GWMA control chart with additional FIR feature requires less time to detect small or moderate shifts than GWMA control chart at low level of autocorrelation; whereas these two control charts perform similarly at high level of autocorrelation. Regardless of any level of autocorrelation, GWMA control charts provided with additional FIR feature have a good performance in detecting large shifts during the initial stage.  相似文献   

2.
Consider a machine that can start production off-target where the initial offset is unknown and unobservable. The goal is to determine the optimal series of machine adjustments that minimize the expected value of the sum of quadratic off-target costs and fixed adjustment costs. Apart of the unknown initial offset, the process is supposed to be in a state of statistical control, so the process model is applicable to discrete-part production processes. The process variance is also assumed unknown. We show, using a dynamic programming formulation based on the Bayesian estimation of all unknown process parameters, how the optimal process adjustment policy is of a deadband form where the width of the deadband is time-varying and U-shaped. Computational results and implementation details are presented. The simpler case of a known process variance is also solved using a dynamic programming approach. It is shown that the solution to this case is a good approximation to the first case, when the variance is actually unknown. The unknown process variance solution, however, is the most robust with respect to variation in the process parameters.  相似文献   

3.
In process control the simple x-charts are widely used. In determining an optimum economic design for such a control procedure the time of satisfactory production is usually assumed to be exponentially distributed. In this paper deviations from this optimistic approach are investigated by comparing E-optimal x-charts (using the assumption of an exponentially distributed lifetime) and M-optimal x-charts which are obtained by tfie pessimistic muumax principle applied to all possible lifetime distributions with the same mean value. The comparison shows that the differences between E- and M-optimal x-charts are only minor with respect to a suitable loss function and therefore, the model under consideration is verv robust against deviations from the assumption about the distribution of the time of satisfactory production.  相似文献   

4.
Recently, several new applications of control chart procedures for short production runs have been introduced. Bothe (1989) and Burr (1989) proposed the use of control chart statistics which are obtained by scaling the quality characteristic by target values or process estimates of a location and scale parameter. The performance of these control charts can be significantly affected by the use of incorrect scaling parameters, resulting in either an excessive "false alarm rate," or insensitivity to the detection of moderate shifts in the process. To correct for these deficiencies, Quesenberry (1990, 1991) has developed the Q-Chart which is formed from running process estimates of the sample mean and variance. For the case where both the process mean and variance are unknown, the Q-chaxt statistic is formed from the standard inverse Z-transformation of a t-statistic. Q-charts do not perform correctly, however, in the presence of special cause disturbances at process startup. This has recently been supported by results published by Del Castillo and Montgomery (1992), who recommend the use of an alternative control chart procedure which is based upon a first-order adaptive Kalman filter model Consistent with the recommendations by Castillo and Montgomery, we propose an alternative short run control chart procedure which is based upon the second order dynamic linear model (DLM). The control chart is shown to be useful for the early detection of unwanted process trends. Model and control chart parameters are updated sequentially in a Bayesian estimation framework, providing the greatest degree of flexibility in the level of prior information which is incorporated into the model. The result is a weighted moving average control chart statistic which can be used to provide running estimates of process capability. The average run length performance of the control chart is compared to the optimal performance of the exponentially weighted moving average (EWMA) chart, as reported by Gan (1991). Using a simulation approach, the second order DLM control chart is shown to provide better overall performance than the EWMA for short production run applications  相似文献   

5.
For a drifted multiple-input and multiple-output (MIMO) system, the double multivariate exponentially weighted moving average (dMEWMA) controller is a popular run-to-run (RTR) controller for adjusting the process mean to a desired target. The stability and performance of dMEWMA controller had been widely studied in literature. Although the dMEWMA controller (with suitable discount matrices) can guarantee long-term stability, it usually requires a moderately large number of runs to bring the process output to approach its desired target if the initial recipe is not chosen appropriately. Due to the initial recipe possibly having an infinite number of feasible solutions for MIMO systems, “how to determine an optimal setting for the initial recipe” turns out to be an interesting research topic. In this article, by solving a constrained optimization problem, we first obtain an optimal initial setting for the input recipe. Then, motivated by this setting, we propose an enhanced dMEWMA controller. The long-term stability conditions and short-term performance of the proposed controller are also addressed. Given a fixed and finite production run, it reveals that the proposed controller has the ability of reducing total mean squared error (TMSE) better than the conventional dMEWMA controller.  相似文献   

6.
In some applications, quality engineers cannot monitor the processes at the beginning of the production process. Because the process parameters are unknown and there are not enough initial samples to estimate the process parameters. Self-starting control charts are applied to monitor processes at the start-up stages with no enough initial samples. In this paper, we propose three self-starting control charts to monitor a logistic regression profile which models the relationship between a binomial response variable and explanatory variables. Also, we compare the proposed control charts with each other through simulation studies in terms of average run length (ARL) criterion.  相似文献   

7.
Traditionally, using a control chart to monitor a process assumes that process observations are normally and independently distributed. In fact, for many processes, products are either connected or autocorrelated and, consequently, obtained observations are autocorrelative rather than independent. In this scenario, applying an independence assumption instead of autocorrelation for process monitoring is unsuitable. This study examines a generally weighted moving average (GWMA) with a time-varying control chart for monitoring the mean of a process based on autocorrelated observations from a first-order autoregressive process (AR(1)) with random error. Simulation is utilized to evaluate the average run length (ARL) of exponentially weighted moving average (EWMA) and GWMA control charts. Numerous comparisons of ARLs indicate that the GWMA control chart requires less time to detect various shifts at low levels of autocorrelation than those at high levels of autocorrelation. The GWMA control chart is more sensitive than the EWMA control chart for detecting small shifts in a process mean.  相似文献   

8.
ABSTRACT

Quality control charts have been widely recognized as a potentially powerful statistical process monitoring tool in statistical process control because of their superior ability in detecting shifts in the process parameters. Recently, auxiliary-information-based control charts have been proposed and shown to have excellent speed in detecting process shifts than those based without it. In this paper, we design a new synthetic control chart that is based on a statistic that utilizes information from both the study and auxiliary variables. The proposed synthetic chart encompasses the classical synthetic chart. The construction, optimal design, run length profiles, and the performance evaluation of the new chart are discussed in detail. It turns out that the proposed synthetic chart performs uniformly better than the classical synthetic chart when detecting different kinds of shifts in the process mean under both zero-state and steady-state run length performances. Moreover, with reasonable assumptions, the proposed chart also surpasses the exponentially weighted moving average control chart. An application with a simulated data set is also presented to explain the implementation of the proposed control chart.  相似文献   

9.
10.
Often the manufacturing and the inspection workstations in a manufacturing process can coincide: thus, in these workstations the statistical process control (SPC) procedure of collecting sample statistics related to a critical-to-quality parameter is a task required to be done by the same worker who has to complete the working operations on a part. The aim of this study is to design a local SPC inspection procedure implementing an adaptive Shewhart control chart locally managed by the worker within the manufacturing workstation: the economic design of the inspection procedure is constrained by the expected number of false alarms issued and is restricted to those designs feasible with respect to the available shared labour resource. Furthermore, a robust approach that models the shift of the controlled parameter mean as a random variable is taken into account. The numerical analysis allows the most influencing environmental process factors to be captured and commented upon. The obtained results show that a few process operating parameters drive the choice of performing a robust optimization and the selection of the optimal SPC adaptive procedure.  相似文献   

11.
The exponentially weighted moving average (EWMA) control charts with variable sampling intervals (VSIs) have been shown to be substantially quicker than the fixed sampling intervals (FSI) EWMA control charts in detecting process mean shifts. The usual assumption for designing a control chart is that the data or measurements are normally distributed. However, this assumption may not be true for some processes. In the present paper, the performances of the EWMA and combined –EWMA control charts with VSIs are evaluated under non-normality. It is shown that adding the VSI feature to the EWMA control charts results in very substantial decreases in the expected time to detect shifts in process mean under both normality and non-normality. However, the combined –EWMA chart has its false alarm rate and its detection ability is affected if the process data are not normally distributed.  相似文献   

12.
In the field of statistical process control (SPC), control charts for attributes are widely used to detect the out-of-control condition by checking the number of nondefective units or nondefective in a sample. In this article, we use the average time to signal (ATS) and the average number of observations to signal (ANOS) to evaluate the performance of the optimal variable sample size and sampling interval (VSSI) improved square root transformation (ISRT) mean square error (MSE) (VSSI_ ISRT_ MSE) control chart for attribute data. In addition, this control chart will be used to monitor: (1) the difference between the process mean and the target value, and (2) the process variance shifts. We found that the optimal VSSI_ ISRT_ MSE chart performs better than the specific VSSI, the optimal variable sampling interval (VSI), and the fixed parameters (FP) ISRT_MSE charts. An example is given to illustrate this new proposed approach.  相似文献   

13.
We consider a class of singular control problems driven by a double exponential jump diffusion process, which come from the reversible investment problem. In some interesting cases (e.g., the running cost function is given by the so-called Cobb-Douglas production function), we give the explicit solutions to the singular control problem by using the connection between singular control and optimal switching. We solve a collection of consistent optimal switching problems and yield the explicit solution for the singular control problem. We then give an application to a particular inventory control problem in a single random period.  相似文献   

14.
The quality and loss of products are crucial factors separating competitive companies in global market. Firms widely employ a loss function to measure the loss caused by a deviation of the quality variable from the target value. Monitoring this deviation from the process target value is important from the view of Taguchi’s philosophy. In reality, there are many situations where the distribution of the quality variable may not be normal but skewed. This paper aims at developing a median loss (ML) control chart for monitoring quality loss under skewed distributions. Both the cases with fixed and variable sampling intervals are considered. Numerical results show that the ML chart with (optimal) variable sampling intervals performs better than the ML chart in detecting small to moderate shifts in the process loss centre or in the difference of mean and target and/or variance of a process variable. The ML chart and the ML chart with variable sampling intervals also illustrate the best performance in detection out-of-control process for a process quality variable with a left-skewed distribution. A numerical example illustrates the application of the proposed control chart.  相似文献   

15.
New statistical techniques and procedures have been developed to control high-yield processes along with looking for process improvement opportunities and minimizing production cost. Cumulative count of conforming control chart is generally a technique for high-quality processes, when nonconforming items are rarely produced. The objective of this study is to design control chart based on cumulative count of conforming items and run rules that develops an economic model based on the average number of inspected items to design m-of-m CCC chart in order to facilitate minimum average cost per item produced. The optimal design parameters for different values of nonconforming fraction and different cost parameters in each scenario are determined. Finally, to analyze the behavior of optimal economic solutions, sensitivity analysis of the model parameters is performed.  相似文献   

16.
Duncan's economic model of Shewhart's original x¯ chart has established its optimal and economic application for processes with the Markovian failure characteristic. As the sample statistics show some indications of process variations, the variable-sampling-interval (VSI) control charts perform more effectively than the fixed sampling interval (FSI) ones due to a higher frequency in the sampling rate. Regarding the economic design of control charts, most studies have been dedicated to the FSI scheme. In 1998, Bai & Lee considered the production process with a single assignable cause and proposed an economic VSI design for a general x¯ control chart. However, in real cases, there are multiple assignable causes in the production process. Therefore, concerning the operation characteristics of the real industry, this research develops an economic model for the VSI control chart with multiple assignable causes based on stochastic and statistics theory and determines the optimal design parameters of the chart. A numerical example is also provided to demonstrate the effectiveness of the proposed model and the result indicates that VSI performs more effectively than a FSI control chart.  相似文献   

17.
Statistical quality control charts have been widely accepted as a potentially powerful process monitoring tool because of their excellent speed in tracking shifts in the underlying process parameter(s). In recent studies, auxiliary-information-based (AIB) control charts have shown superior run length performances than those constructed without using it. In this paper, a new double sampling (DS) control chart is constructed whose plotting-statistics requires information on the study variable and on any correlated auxiliary variable for efficiently monitoring the process mean, namely AIB DS chart. The AIB DS chart also encompasses the classical DS chart. We discuss in detail the construction, optimal design, run length profiles, and the performance evaluations of the proposed chart. It turns out that the AIB DS chart performs uniformly better than the DS chart when detecting different kinds of shifts in the process mean. It is also more sensitive than the classical synthetic and AIB synthetic charts when detecting a particular shift in the process mean. Moreover, with some realistic beliefs, the proposed chart outperforms the exponentially weighted moving average chart. An illustrative example is also presented to explain the working and implementation of the proposed chart.  相似文献   

18.
Recent studies have shown that using variable sampling size and control limits (VSSC) schemes result in charts with more statistical power than variable sampling size (VSS) when detecting small to moderate shifts in the process mean vector. This paper presents an economic-statistical design (ESD) of the VSSC T2 control chart using the general model of Lorenzen and Vance [22]. The genetic algorithm approach is then employed to search for the optimal values of the six test parameters of the chart. We then compare the expected cost per unit of time of the optimally designed VSSC chart with optimally designed VSS and FRS (fixed ratio sampling) T2 charts as well as MEWMA charts.  相似文献   

19.
Change point estimation procedures simplify the efforts to search for and identify special causes in multivariate statistical process monitoring. After a signal is generated by the simultaneously used control charts or a single control chart, add-on change point procedure estimates the time of the change. In this study, multivariate joint change point estimation performance for simultaneous monitoring of both location and dispersion is compared under the assumption that various single charts are used to monitor the process. The change detection performance for several structural changes for the mean vector and covariance matrix is also discussed. It is concluded that choice of the control chart to obtain a signal may affect the change point detection performance.  相似文献   

20.
A statistical quality control chart is an important tool of the statistical process control, which is widely used to control and monitor a production process. The CUSUM chart is designed to detect a specific shift, provided that the shift size is known in advance. In practice, however, shift sizes are rarely known. It is then customary to use an adaptive CUSUM chart, which can effectively detect a range of shift sizes. In this paper, we enhance the sensitivities of the improved adaptive CUSUM mean charts using an auxiliary-information-based (AIB) mean estimator. The run length performances of the proposed charts are compared with those of the AIB adaptive and non-adaptive CUSUM charts in terms of the average run length (ARL), extra quadratic loss, and integral relative ARL. These run length comparisons reveal that the proposed charts are more sensitive than the existing charts when detecting different kinds of shift in the process mean. An example is given to demonstrate the implementation of existing and proposed charts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号