首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《随机性模型》2013,29(2-3):485-505
ABSTRACT

We study the queue length distribution of a queueing system with BMAP arrivals under D-policy. The idle server begins to serve the customers only when the sum of the service times of all waiting customers exceeds some fixed threshold D. We derive the vector generating functions of the queue lengths both at a departure and at an arbitrary point of time. Mean queue lengths are derived and a numerical example is presented.  相似文献   

2.
Queues with Markovian arrival and service processes, i.e., MAP/MAP/1 queues, have been useful in the analysis of computer and communication systems and different representations for their stationary sojourn time and queue length distribution have been derived. More specifically, the class of MAP/MAP/1 queues lies at the intersection of the class of QBD queues and the class of semi-Markovian queues. While QBD queues have a matrix exponential representation for their queue length and sojourn time distribution of order N and N2, respectively, where N is the size of the background continuous time Markov chain, the reverse is true for a semi-Markovian queue. As the class of MAP/MAP/1 queues lies at the intersection, both the queue length and sojourn time distribution of a MAP/MAP/1 queue has an order N matrix exponential representation. The aim of this article is to understand why the order N2 distributions of the sojourn time of a QBD queue and the queue length of a semi-Markovian queue can be reduced to an order N distribution in the specific case of a MAP/MAP/1 queue. We show that the key observation exists in establishing the commutativity of some fundamental matrices involved in the analysis of the MAP/MAP/1 queue.  相似文献   

3.
《随机性模型》2013,29(2):157-190
In this paper, we establish an explicit form of matrix decompositions for the queue length distributions of the MAP/G/1 queues under multiple and single vacations with N-policy. We show that the vector generating function Y (z) of the queue length at an arbitrary time and X (z) at departures are decomposed into Y (z) = p idle (z Y (z) and X (z) = p idle (z X (z) where p idle (z) is the vector generating function of the queue length at an arbitrary epoch at which the server is not in service, and ζ Y (z) and ζ X (z) are unidentified matrix generating functions.  相似文献   

4.
In this article, maximum likelihood estimator (MLE) as well as Bayes estimator of traffic intensity (ρ) in an M/M/1/∞ queueing model in equilibrium based on number of customers present in the queue at successive departure epochs have been worked out. Estimates of some functions of ρ which provide measures of effectiveness of the queue have also been derived. A comprehensive simulation study starting with the transition probability matrix has been carried out in the last section.  相似文献   

5.
《随机性模型》2013,29(4):457-472
Abstract

A G θ I/G/1-type batch arrival system is considered. Explicit formulae for the distribution of queue length both at the fixed time t and as t → ∞ are obtained. The study is based on the generalization of Korolyuk's method for semi-markov random walks.  相似文献   

6.
《随机性模型》2013,29(2-3):725-744
Abstract

We propose a method to approximate the transient performance measures of a discrete time queueing system via a steady state analysis. The main idea is to approximate the system state at time slot t or on the n-th arrival–-depending on whether we are studying the transient queue length or waiting time distribution–-by the system state after a negative binomially distributed number of slots or arrivals. By increasing the number of phases k of the negative binomial distribution, an accurate approximation of the transient distribution of interest can be obtained.

In order to efficiently obtain the system state after a negative binomially distributed number of slots or arrivals, we introduce so-called reset Markov chains, by inserting reset events into the evolution of the queueing system under consideration. When computing the steady state vector of such a reset Markov chain, we exploit the block triangular block Toeplitz structure of the transition matrices involved and we directly obtain the approximation from its steady state vector. The concept of the reset Markov chains can be applied to a broad class of queueing systems and is demonstrated in full detail on a discrete-time queue with Markovian arrivals and phase-type services (i.e., the D-MAP/PH/1 queue). We focus on the queue length distribution at time t and the waiting time distribution of the n-th customer. Other distributions, e.g., the amount of work left behind by the n-th customer, that can be acquired in a similar way, are briefly touched upon.

Using various numerical examples, it is shown that the method provides good to excellent approximations at low computational costs–-as opposed to a recursive algorithm or a numerical inversion of the Laplace transform or generating function involved–-offering new perspectives to the transient analysis of practical queueing systems.  相似文献   

7.
《随机性模型》2013,29(2-3):821-846
Abstract

We propose a family of finite approximations for the departure process of a BMAP/MAP/1 queue. The departure process approximations are derived via an exact aggregate solution technique (called ETAQA) applied to M/G/1-type Markov processes. The proposed approximations are indexed by a parameter n(n > 1), which determines the size of the output model as n + 1 block levels of the M/G/1-type process. This output approximation preserves exactly the marginal distribution of the true departure process and the lag correlations of the interdeparture times up to lag n ? 2. Experimental results support the applicability of the proposed approximation in traffic-based decomposition of queueing networks.  相似文献   

8.
Abstract

This paper deals with Geo/G/1 queues with a repairable server. The server is subject to failure due to a disaster arrival, which can occur while the server is turned on and not only when it is busy. At a failure instant, the server is turned off and its repair process begins. During the repair process, two models are considered. For both models, we present the PGF and the expected number of clients in the system in the steady state.  相似文献   

9.
《随机性模型》2013,29(2-3):507-530
ABSTRACT

In this paper, we study a BMAP/M/1 generalized processor-sharing queue. We propose an RG-factorization approach, which can be applied to a wider class of Markovian block-structured processor-sharing queues. We obtain the expressions for both the distribution of the stationary queue length and the Laplace transform of the sojourn time distribution. From these two expressions, we develop an algorithm to compute the mean and variance of the sojourn time approximately.  相似文献   

10.
《随机性模型》2013,29(1):185-213
ABSTRACT

We consider a class of single server queueing systems in which customers arrive singly and service is provided in batches, depending on the number of customers waiting when the server becomes free. Service is independent of the batch size. This system could also be considered as a batch service queue in which a server visits the queue at arbitrary times and collects a batch of waiting customers for service, or waits for a customer to arrive if there are no waiting customers. A waiting server immediately collects and processes the first arriving customer. The system is considered in discrete time. The interarrival times of customers and the inter-visit times of the server, which we call the service time, have general distributions and are represented as remaining time Markov chains. We analyze this system using the matrix-geometric method and show that the resulting R matrix can be determined explicitly in some special cases and the stationary distributions are known semi-explicitly in some other special cases.  相似文献   

11.
《随机性模型》2013,29(2):173-191
Abstract

We propose a new approximation formula for the waiting time tail probability of the M/G/1 queue with FIFO discipline and unlimited waiting space. The aim is to address the difficulty of obtaining good estimates when the tail probability has non-exponential asymptotics. We show that the waiting time tail probability can be expressed in terms of the waiting time tail probability of a notional M/G/1 queue with truncated service time distribution plus the tail probability of an extreme order statistic. The Cramér–Lundberg approximation is applied to approximate the tail probability of the notional queue. In essence, our technique extends the applicability of the Cramér–Lundberg approximation to cases where the standard Lundberg condition does not hold. We propose a simple moment-based technique for estimating the parameters of the approximation; numerical results demonstrate that our approximation can yield very good estimates over the whole range of the argument.  相似文献   

12.
《随机性模型》2013,29(4):589-595
The present paper contains an analysis of the MAP/G/1 queue with last come first served (LCFS) preemptive repeat service discipline and Lebesgue-dominated service time distribution. The transient distribution is given in terms of a recursive formula. The stationary distribution as well as the stability condition are obtained by means of Markov renewal theory via a QBD representation of the embedded Markov chain at departures and arrivals.  相似文献   

13.
《随机性模型》2013,29(3):369-374
It is shown that, analogous to partial-sum processes in renewal theory, nondecreasing Lévy processes (subordinators) can be delayed such as to show a certain stationarity.  相似文献   

14.
《随机性模型》2013,29(2-3):799-820
ABSTRACT

We investigate the tail probability of the queue length of low-priority class for a discrete-time priority BMAP/PH/1 queue that consists of two priority classes, with BMAP (Batch Markovian Arrival Process) arrivals of high-priority class and MAP (Markovian Arrival Process) arrivals of low-priority class. A sufficient condition under which this tail probability has the asymptotically geometric property is derived. A method is designed to compute the asymptotic decay rate if the asymptotically geometric property holds. For the case when the BMAP for high-priority class is the superposition of a number of MAP's, though the parameter matrices representing the BMAP is huge in dimension, the sufficient condition is numerically easy to verify and the asymptotic decay rate can be computed efficiently.  相似文献   

15.
《随机性模型》2013,29(3):349-381
This paper considers a work-conserving FIFO single-server queue with multiple batch Markovian arrival streams governed by a continuous-time finite-state Markov chain. A particular feature of this queue is that service time distributions of customers may be different for different arrival streams. After briefly discussing the actual waiting time distributions of customers from respective arrival streams, we derive a formula for the vector generating function of the time-average joint queue length distribution in terms of the virtual waiting time distribution. Further assuming the discrete phase-type batch size distributions, we develop a numerically feasible procedure to compute the joint queue length distribution. Some numerical examples are provided also.  相似文献   

16.
In this article, we exploit the Bayesian inference and prediction for an M/G/1 queuing model with optional second re-service. In this model, a service unit attends customers arriving following a Poisson process and demanding service according to a general distribution and some of customers need to re-service with probability “p”. First, we introduce a mixture of truncated Normal distributions on interval (? ∞, 0) to approximate the service and re-service time densities. Then, given observations of the system, we propose a Bayesian procedure based on birth-death MCMC methodology to estimate some performance measures. Finally, we apply the theories in practice by providing a numerical example based on real data which have been obtained from a hospital.  相似文献   

17.
The present paper derives the relative efficiency of a parameter for the M/G/1 queueing system based on reduced and full likelihood functions. Monte Carlo simulations were carried out to study the finite sample properties for estimating the parameters of a M/G/1 queueing system. The simulation runs were conducted using various traftic intensities with increaseing sample sizes. The simulation results indicate that the loss in efficiency is quite small due to the use of a reduced likelihood function approach for estimating the parameter instead of the full likelihood, even for a moderate sample size of 50  相似文献   

18.
In this paper we consider a Bayesian nonparametric approach to the analysis of discrete-time queueing models. The main motivation consists in applications to telecommunications, and in particular to asynchronous transfer mode (ATM) systems. Attention is focused on the posterior distribution of the overflow rate. Since the exact distribution of such a quantity is not available in a closed form, an approximation based on “proper” Bayesian bootstrap is proposed, and its properties are studied. Some possible alternatives to proper Bayesian bootstrap are also discussed. Finally, an application to real data is provided.  相似文献   

19.
In this paper, the maximum likelihood estimates of the parameters for the M/Er /1 queueing model are derived when the queue size at each departure point is observed. A numerical example is generated by simulating a finite Markov chain to illustrate the methodology for estimating the parameters with variable Erlang service time distribution. The problem of hypothesis testing and simultaneous Confidence regions of the parameter is also investigated.0  相似文献   

20.
This article develops a computational algorithm for the loss probability in the stationary M/G/1 queue with impatient customers whose impatience times follow a phase-type distribution (M/G/1+PH). The algorithm outputs the loss probability, along with an upper-bound of its numerical error due to truncation, and it is readily applicable to the M/D/1+PH, M/PH/1+PH, and M/Pareto/1+PH queues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号