首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 456 毫秒
1.
The lognormal distribution is currently used extensively to describe the distribution of positive random variables. This is especially the case with data pertaining to occupational health and other biological data. One particular application of the data is statistical inference with regards to the mean of the data. Other authors, namely Zou et al. (2009), have proposed procedures involving the so-called “method of variance estimates recovery” (MOVER), while an alternative approach based on simulation is the so-called generalized confidence interval, discussed by Krishnamoorthy and Mathew (2003). In this paper we compare the performance of the MOVER-based confidence interval estimates and the generalized confidence interval procedure to coverage of credibility intervals obtained using Bayesian methodology using a variety of different prior distributions to estimate the appropriateness of each. An extensive simulation study is conducted to evaluate the coverage accuracy and interval width of the proposed methods. For the Bayesian approach both the equal-tail and highest posterior density (HPD) credibility intervals are presented. Various prior distributions (Independence Jeffreys' prior, Jeffreys'-Rule prior, namely, the square root of the determinant of the Fisher Information matrix, reference and probability-matching priors) are evaluated and compared to determine which give the best coverage with the most efficient interval width. The simulation studies show that the constructed Bayesian confidence intervals have satisfying coverage probabilities and in some cases outperform the MOVER and generalized confidence interval results. The Bayesian inference procedures (hypothesis tests and confidence intervals) are also extended to the difference between two lognormal means as well as to the case of zero-valued observations and confidence intervals for the lognormal variance. In the last section of this paper the bivariate lognormal distribution is discussed and Bayesian confidence intervals are obtained for the difference between two correlated lognormal means as well as for the ratio of lognormal variances, using nine different priors.  相似文献   

2.
Inference based on the Central Limit Theorem has only first order accuracy. We give tests and confidence intervals (CIs) of second orderaccuracy for the shape parameter ρ of a gamma distribution for both the unscaled and scaled cases.

Tests and CIs based on moment and cumulant estimates are considered as well as those based on the maximum likelihood estimate (MLE).

For the unscaled case the MLE is the moment estimate of order zero; the most efficient moment estimate of integral order is the sample mean, having asymptotic relative efficiency (ARE) .61 when ρ= 1.

For the scaled case the most efficient moment estimate is a functionof the mean and variance. Its ARE is .39 when ρ = 1.

Our motivation for constructing these tests of ρ = 1 and CIs forρ is to provide a simple and convenient method for testing whether a distribution is exponential in situations such as rainfall models where such an assumption is commonly made.  相似文献   

3.
Exact confidence intervals for variances rely on normal distribution assumptions. Alternatively, large-sample confidence intervals for the variance can be attained if one estimates the kurtosis of the underlying distribution. The method used to estimate the kurtosis has a direct impact on the performance of the interval and thus the quality of statistical inferences. In this paper the author considers a number of kurtosis estimators combined with large-sample theory to construct approximate confidence intervals for the variance. In addition, a nonparametric bootstrap resampling procedure is used to build bootstrap confidence intervals for the variance. Simulated coverage probabilities using different confidence interval methods are computed for a variety of sample sizes and distributions. A modification to a conventional estimator of the kurtosis, in conjunction with adjustments to the mean and variance of the asymptotic distribution of a function of the sample variance, improves the resulting coverage values for leptokurtically distributed populations.  相似文献   

4.
In many engineering problems it is necessary to draw statistical inferences on the mean of a lognormal distribution based on a complete sample of observations. Statistical demonstration of mean time to repair (MTTR) is one example. Although optimum confidence intervals and hypothesis tests for the lognormal mean have been developed, they are difficult to use, requiring extensive tables and/or a computer. In this paper, simplified conservative methods for calculating confidence intervals or hypothesis tests for the lognormal mean are presented. In this paper, “conservative” refers to confidence intervals (hypothesis tests) whose infimum coverage probability (supremum probability of rejecting the null hypothesis taken over parameter values under the null hypothesis) equals the nominal level. The term “conservative” has obvious implications to confidence intervals (they are “wider” in some sense than their optimum or exact counterparts). Applying the term “conservative” to hypothesis tests should not be confusing if it is remembered that this implies that their equivalent confidence intervals are conservative. No implication of optimality is intended for these conservative procedures. It is emphasized that these are direct statistical inference methods for the lognormal mean, as opposed to the already well-known methods for the parameters of the underlying normal distribution. The method currently employed in MIL-STD-471A for statistical demonstration of MTTR is analyzed and compared to the new method in terms of asymptotic relative efficiency. The new methods are also compared to the optimum methods derived by Land (1971, 1973).  相似文献   

5.
Abstract

Sample size calculation is an important component in designing an experiment or a survey. In a wide variety of fields—including management science, insurance, and biological and medical science—truncated normal distributions are encountered in many applications. However, the sample size required for the left-truncated normal distribution has not been investigated, because the distribution of the sample mean from the left-truncated normal distribution is complex and difficult to obtain. This paper compares an ad hoc approach to two newly proposed methods based on the Central Limit Theorem and on a high degree saddlepoint approximation for calculating the required sample size with the prespecified power. As shown by use of simulations and an example of health insurance cost in China, the ad hoc approach underestimates the sample size required to achieve prespecified power. The method based on the high degree saddlepoint approximation provides valid sample size and power calculations, and it performs better than the Central Limit Theorem. When the sample size is not too small, the Central Limit Theorem also provides a valid, but relatively simple tool to approximate that sample size.  相似文献   

6.
Five estimation approaches have been developed to compute the confidence interval (CI) for the ratio of two lognormal means: (1) T, the CI based on the t-test procedure; (2) ML, a traditional maximum likelihood-based approach; (3) BT, a bootstrap approach; (4) R, the signed log-likelihood ratio statistic; and (5) R*, the modified signed log-likelihood ratio statistic. The purpose of this study was to assess the performance of these five approaches when applied to distributions other than lognormal distribution, for which they were derived. Performance was assessed in terms of average length and coverage probability of the CIs for each estimation approaches (i.e., T, ML, BT, R, and R*) when data followed a Weibull or gamma distribution. Four models were discussed in this study. In Model 1, the sample sizes and variances were equal within the two groups. In Model 2, the sample sizes were equal but variances were different within the two groups. In Model 3, the variances were different within the two groups and the larger variance was paired with the larger sample size. In Model 4, the variances were different within the two groups and the larger variance was paired with the smaller sample size. The results showed that when the variances of the two groups were equal, the t-test performed well, no matter what the underlying distribution was and how large the variances of the two groups were. The BT approach performed better than the others when the underlying distribution was not lognormal distribution, although it was inaccurate when the variances were large. The R* test did not perform well when the underlying distribution was Weibull or gamma distributed data, but it performed best when the data followed a lognormal distribution.  相似文献   

7.
For constructing simultaneous confidence intervals for ratios of means for lognormal distributions, two approaches using a two-step method of variance estimates recovery are proposed. The first approach proposes fiducial generalized confidence intervals (FGCIs) in the first step followed by the method of variance estimates recovery (MOVER) in the second step (FGCIs–MOVER). The second approach uses MOVER in the first and second steps (MOVER–MOVER). Performance of proposed approaches is compared with simultaneous fiducial generalized confidence intervals (SFGCIs). Monte Carlo simulation is used to evaluate the performance of these approaches in terms of coverage probability, average interval width, and time consumption.  相似文献   

8.
Guogen Shan 《Statistics》2018,52(5):1086-1095
In addition to point estimate for the probability of response in a two-stage design (e.g. Simon's two-stage design for binary endpoints), confidence limits should be computed and reported. The current method of inverting the p-value function to compute the confidence interval does not guarantee coverage probability in a two-stage setting. The existing exact approach to calculate one-sided limits is based on the overall number of responses to order the sample space. This approach could be conservative because many sample points have the same limits. We propose a new exact one-sided interval based on p-value for the sample space ordering. Exact intervals are computed by using binomial distributions directly, instead of a normal approximation. Both exact intervals preserve the nominal confidence level. The proposed exact interval based on the p-value generally performs better than the other exact interval with regard to expected length and simple average length of confidence intervals.  相似文献   

9.
The effect of rejecting a two-sided preliminary test of significance for the mean of a normal distribution upon subsequent interval estimation of the mean is examined. For the case where the variance is known, conditional confidence intervals may be shorter than unconditional intervals, in contrast to the one-sided preliminary test case examined by Meeks and D’Agostino (1983, The American Statistician, 7, 134-136) . For the case where the variance is unknown and must be estimated by the sample variance, it is shown that customary intervals do not offer uniformly greater or lesser coverage than the nominal level.  相似文献   

10.
We consider Markov-dependent binary sequences and study various types of success runs (overlapping, non-overlapping, exact, etc.) by examining additive functionals based on state visits and transitions in an appropriate Markov chain. We establish a multivariate Central Limit Theorem for the number of these types of runs and obtain its covariance matrix by means of the recurrent potential matrix of the Markov chain. Explicit expressions for the covariance matrix are given in the Bernoulli and a simple Markov-dependent case by expressing the recurrent potential matrix in terms of the stationary distribution and the mean transition times in the chain. We also obtain a multivariate Central Limit Theorem for the joint number of non-overlapping runs of various sizes and give its covariance matrix in explicit form for Markov dependent trials.  相似文献   

11.
The interval between two prespecified order statistics of a sample provides a distribution-free confidence interval for a population quantile. However, due to discreteness, only a small set of exact coverage probabilities is available. Interpolated confidence intervals are designed to expand the set of available coverage probabilities. However, we show here that the infimum of the coverage probability for an interpolated confidence interval is either the coverage probability for the inner interval or the coverage probability obtained by removing the more likely of the two extreme subintervals from the outer interval. Thus, without additional assumptions, interpolated intervals do not expand the set of available guaranteed coverage probabilities.  相似文献   

12.
Comparison of accuracy between two diagnostic tests can be implemented by investigating the difference in paired Youden indices. However, few literature articles have discussed the inferences for the difference in paired Youden indices. In this paper, we propose an exact confidence interval for the difference in paired Youden indices based on the generalized pivotal quantities. For comparison, the maximum likelihood estimate‐based interval and a bootstrap‐based interval are also included in the study for the difference in paired Youden indices. Abundant simulation studies are conducted to compare the relative performance of these intervals by evaluating the coverage probability and average interval length. Our simulation results demonstrate that the exact confidence interval outperforms the other two intervals even with small sample size when the underlying distributions are normal. A real application is also used to illustrate the proposed intervals. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
We develop an approach to evaluating frequentist model averaging procedures by considering them in a simple situation in which there are two‐nested linear regression models over which we average. We introduce a general class of model averaged confidence intervals, obtain exact expressions for the coverage and the scaled expected length of the intervals, and use these to compute these quantities for the model averaged profile likelihood (MPI) and model‐averaged tail area confidence intervals proposed by D. Fletcher and D. Turek. We show that the MPI confidence intervals can perform more poorly than the standard confidence interval used after model selection but ignoring the model selection process. The model‐averaged tail area confidence intervals perform better than the MPI and postmodel‐selection confidence intervals but, for the examples that we consider, offer little over simply using the standard confidence interval for θ under the full model, with the same nominal coverage.  相似文献   

14.
In this paper we.present a Normal asymptotic distribution for the logarithm of the generalized Wilks Lambda statistic based on an asymptotic distribution for the determinant of a Wishart matrix. This distribution is obtained through the combined use of Taylor expansions of random variables whose exponentials have chi-square distributions and the Lindeberg-Feller version of the Central Limit Theorem, Another asymptotic Normal distribution for the logarithm of the generalized Wilks Lambda statistic for the case when at most one of the sets has an odd number of variables is derived directly from the exact distribution. Both distributions are non-degenerate and non-singular. The first Normal distribution compares favorably with other known approximations and asymptotic distributions namely for large numbers of variables and small sample sizes, while the second Normal distribution, which has a more restricted application, compares in most cases highly favorably with other known asymptotic distributions and approximations. Finally, a method to compute approximate quantiles which lay very close and converge steadily to the exact ones is presented.  相似文献   

15.
Methods for constructing confidence intervals for variance component ratios in general unbalanced mixed models are developed. The methods are based on inverting the distribution of the signed root of the log-likelihood ratio statistic constructed from either the restricted maximum likelihood or the full likelihood. As this distribution is intractable, the inversion is rather based on using a saddlepoint approximation to its distribution. Apart from Wald's exact method, the resulting intervals are unrivalled in terms of achieving accuracy in overall coverage, underage, and overage. Issues related to the proper “reference set” with which to judge the coverage as well as issues connected to variance ratios being nonnegative with lower bound 0 are addressed. Applications include an unbalanced nested design and an unbalanced crossed design.  相似文献   

16.
Confidence intervals [based on F-distribution and (Z) standard normal distribution] for a linear contrast in intraclass correlation coefficients under unequal family sizes for several populations based on several independent multinormal samples have been proposed. It has been found that the confidence interval based on F-distribution consistently and reliably produced better results in terms of shorter average length of the interval than the confidence interval based on standard normal distribution for various combinations of intraclass correlation coefficient values. The coverage probability of the interval based on F-distribution is competitive with the coverage probability of the interval based on standard normal distribution. The interval based on F-distribution can be used for both small sample and large sample situations. An example with real life data has been presented.  相似文献   

17.
The coefficient of variation (CV) can be used as an index of reliability of measurement. The lognormal distribution has been applied to fit data in many fields. We developed approximate interval estimation of the ratio of two coefficients of variation (CsV) for lognormal distributions by using the Wald-type, Fieller-type, log methods, and method of variance estimates recovery (MOVER). The simulation studies show that empirical coverage rates of the methods are satisfactorily close to a nominal coverage rate for medium sample sizes.  相似文献   

18.
Asymptotic approaches are traditionally used to calculate confidence intervals for intraclass correlation coefficient in a clustered binary study. When sample size is small to medium, or correlation or response rate is near the boundary, asymptotic intervals often do not have satisfactory performance with regard to coverage. We propose using the importance sampling method to construct the profile confidence limits for the intraclass correlation coefficient. Importance sampling is a simulation based approach to reduce the variance of the estimated parameter. Four existing asymptotic limits are used as statistical quantities for sample space ordering in the importance sampling method. Simulation studies are performed to evaluate the performance of the proposed accurate intervals with regard to coverage and interval width. Simulation results indicate that the accurate intervals based on the asymptotic limits by Fleiss and Cuzick generally have shorter width than others in many cases, while the accurate intervals based on Zou and Donner asymptotic limits outperform others when correlation and response rate are close to their boundaries.  相似文献   

19.
For interval estimation of a proportion, coverage probabilities tend to be too large for “exact” confidence intervals based on inverting the binomial test and too small for the interval based on inverting the Wald large-sample normal test (i.e., sample proportion ± z-score × estimated standard error). Wilson's suggestion of inverting the related score test with null rather than estimated standard error yields coverage probabilities close to nominal confidence levels, even for very small sample sizes. The 95% score interval has similar behavior as the adjusted Wald interval obtained after adding two “successes” and two “failures” to the sample. In elementary courses, with the score and adjusted Wald methods it is unnecessary to provide students with awkward sample size guidelines.  相似文献   

20.
We study confidence intervals based on hard-thresholding, soft-thresholding, and adaptive soft-thresholding in a linear regression model where the number of regressors k may depend on and diverge with sample size n. In addition to the case of known error variance, we define and study versions of the estimators when the error variance is unknown. In the known-variance case, we provide an exact analysis of the coverage properties of such intervals in finite samples. We show that these intervals are always larger than the standard interval based on the least-squares estimator. Asymptotically, the intervals based on the thresholding estimators are larger even by an order of magnitude when the estimators are tuned to perform consistent variable selection. For the unknown-variance case, we provide nontrivial lower bounds and a small numerical study for the coverage probabilities in finite samples. We also conduct an asymptotic analysis where the results from the known-variance case can be shown to carry over asymptotically if the number of degrees of freedom n ? k tends to infinity fast enough in relation to the thresholding parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号