首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B. Chandrasekar 《Statistics》2013,47(2):161-165
Assuming that the random vectors X 1 and X 2 have independent bivariate Poisson distributions, the conditional distribution of X 1 given X 1?+?X 2?=?n is obtained. The conditional distribution turns out to be a finite mixture of distributions involving univariate binomial distributions and the mixing proportions are based on a bivariate Poisson (BVP) distribution. The result is used to establish two properties of a bivariate Poisson stochastic process which are the bivariate extensions of the properties for a Poisson process given by Karlin, S. and Taylor, H. M. (1975). A First Course in Stochastic Processes, Academic Press, New York.  相似文献   

2.
ABSTRACT

A bivariate distribution, whose marginal distributions are truncated Poisson distributions, is developed as a product of truncated Poisson distributions and a multiplicative factor. The multiplicative factor takes into account the correlation, either positive or negative, between the two random variables. The distributional properties of this model are studied and the model is fitted to a real life bivariate data.  相似文献   

3.
ABSTRACT

We have provided a fractional generalization of the Poisson renewal processes by replacing the first time derivative in the relaxation equation of the survival probability by a fractional derivative of order α(0 < α ? 1). A generalized Laplacian model associated with the Mittag-Leffler distribution is examined. We also discuss some properties of this new model and its relevance to time series. Distribution of gliding sums, regression behaviors, and sample path properties are studied. Finally we introduce the q-Mittag-Leffler process associated with the q-Mittag-Leffler distribution.  相似文献   

4.
ABSTRACT

We develop the saddlepoint approximations in obtaining the transition functions for general subordinator processes. We derive explicit expressions of the first- and second-order approximations. Specifically, we consider some particular classes of subordinators including the Poisson processes, the Gamma processes, the α-stable subordinators, and the Poisson random integrals. We test this technique on the Poisson and Gamma processes, which have closed-form transition functions. Outcomes show that the approximate expressions are consistent with the true transition functions. We then use this method to predict transition density functions for the α-stable subordinator processes. Finally, we calculate approximated transition densities for some Poisson random integrations. Numerical analysis shows the perfect ability of the saddlepoint approximations to predict the transition densities of the α-stable processes and the Poisson random integrations.  相似文献   

5.
ABSTRACT

The Poisson distribution is extended over the set of all integers. The motivation comes from the many reflected versions of the gamma distribution, the continuous analog of the Poisson distribution, defined over the entire real line. Various mathematical properties of the extended Poisson distribution are derived. Estimation procedures by the methods of moments and maximum likelihood are also derived with their performance assessed by simulation. Finally, a real data application is illustrated.  相似文献   

6.
ABSTRACT

We consider the problem of parameter estimation by the observations of the inhomogeneous Poisson processes. We suppose that the intensity function of these processes is a smooth function of the unknown parameter and as a method of estimation we take the minimum distance approach. We are interested by the behavior of estimators in non Hilbertian situation and we define the minimum distance estimation (MDE) with the help of the Lp metrics. We show that (under regularity conditions) the MDE is consistent and we describe its limit distribution.  相似文献   

7.
Abstract

We propose signed compound Poisson integer-valued GARCH processes for the modeling of the difference of count time series data. We investigate the theoretical properties of these processes and we state their ergodicity and stationarity under mild conditions. We discuss the conditional maximum likelihood estimator when the series appearing in the difference are INGARCH with geometric distribution and explore its finite sample properties in a simulation study. Two real data examples illustrate this methodology.  相似文献   

8.
ABSTRACT

The distributions obtained by left-truncating at k a mixed Poisson distribution, denoted kT-MP, and those obtained by mixing previously left-truncated Poisson distributions, denoted M-kTP, are characterized by means of their probability generating function. The main consequence is that every kT-MP distribution is a M-kTP distribution, but not the other way around.  相似文献   

9.
ABSTRACT

We derive an analytic expression for the bias of the maximum likelihood estimator of the parameter in a doubly-truncated Poisson distribution, which proves highly effective as a means of bias correction. For smaller sample sizes, our method outperforms the alternative of bias correction via the parametric bootstrap. Bias is of little concern in the positive Poisson distribution, the most common form of truncation in the applied literature. Bias appears to be the most severe in the doubly-truncated Poisson distribution, when the mean of the distribution is close to the right (upper) truncation.  相似文献   

10.
ABSTRACT

We consider the problem of analyzing multi-center clinical trials when the number of patients at each center and on each treatment arm is random and follows the Poisson distribution. Theoretical approximations are made for the first two moments of the mean square errors (MSE's) for three different estimators of treatment effect difference that are commonly used in multi-center clinical trials. To construct these approximations, approximations are needed for the harmonic mean and negative moments of the Poisson distribution. This is achieved through the use of recurrence relations. The accuracy of the approximations for the moments of the MSE's were then validated through comparing the theoretical values to those obtained from a simulation study under two different enrollment environments.  相似文献   

11.
Perakis and Xekalaki 2002, A process capability index that is based on the proportion of conformance. Journal of Statistical Computation and Simulation, 72(9), 707–718. introduced a process capability index that is based on the proportion of conformance of the process under study and has several appealing features. One of its advantages is that it can be used not only for continuous processes, as is the case with the majority of the indices considered in the literature, but also for discrete processes as well. In this article, the use of this index is investigated for discrete data under two alternative models, which are frequently considered in statistical process control. In particular, distributional properties and estimation of the index are considered for Poisson processes and for processes resulting in modeling attribute data. The performance of the suggested estimators and confidence limits is tested via simulation.  相似文献   

12.
ABSTRACT

This article considers the problem of choosing between two possible treatments which are each modeled with a Poisson distribution. Win-probabilities are defined as the probabilities that a single potential future observation from one of the treatments will be better than, or at least as good as, a potential future observation from the other treatment. Using historical data from the two treatments, it is shown how estimates and confidence intervals can be constructed for the win-probabilities. Extensions to situations with three or more treatments are also discussed. Some examples and illustrations are provided, and the relationship between this methodology and standard inference procedures on the Poisson parameters is discussed.  相似文献   

13.
Abstract

The non-central negative binomial distribution is both a mixed and compound Poisson distribution with applications in photon and neural counting, statistical optics, astronomy and a stochastic reversible counter system. In this paper various important probabilistic properties of the non-central negative binomial distribution in practical applications like log-concavity, discrete self-decomposability, unimodality, asymptotic behavior and tail length of the probability distribution have been derived. The construction as a mixed Poisson process by specifying a joint distribution for the inter-arrival times and its application is illustrated by a fit to real life data set.  相似文献   

14.
Time series of counts occur in many fields of practice, with the Poisson distribution as a popular choice for the marginal process distribution. A great variety of serial dependence structures of stationary count processes can be modelled by the INARMA family. In this article, we propose a new approach to the INMA(q) family in general, including previously known results as special cases. In the particular case of Poisson marginals, we will derive new results concerning regression properties and the serial dependence structure of INAR(1) and INMA(q) models. Finally, we present explicit expressions for the distribution of jumps in such processes.  相似文献   

15.
Abstract

In this paper we introduce a new two-parameter discrete distribution which may be useful for modeling count data. Additionally, the probability mass function is very simple and it may have a zero vertex. We show that the new discrete distribution is a particular solution of a multiple Poisson process, and that it is infinitely divisible. Additionally, various structural properties of the new discrete distribution are derived. We also discuss two methods (moments and maximum likelihood) to estimate the model parameters. The usefulness of the proposed distribution is illustrated by means of real data sets to prove its versatility in practical applications.  相似文献   

16.
ABSTRACT

The aim of this paper is to give some new characterizations of discrete compound Poisson distributions. Firstly, we give a characterization by the Lévy–Khintchine formula of infinitely divisible distributions under some conditions. The second characterization need to present by row sum of random triangular arrays converges in distribution. And we give an application in probabilistic number theory, the strongly additive function converging to a discrete compound Poisson in distribution. The next characterization, is an extension of Watanabe’s theorem of characterization of homogeneous Poisson process. The last characterization will be illustrated by waiting time distributions, especially the matrix-exponential representation.  相似文献   

17.
ABSTRACT

Recently, Risti? and Nadarajah [A new lifetime distribution. J Stat Comput Simul. 2014;84:135–150] introduced the Poisson generated family of distributions and investigated the properties of a special case named the exponentiated-exponential Poisson distribution. In this paper, we study general mathematical properties of the Poisson-X family in the context of the T-X family of distributions pioneered by Alzaatreh et al. [A new method for generating families of continuous distributions. Metron. 2013;71:63–79], which include quantile, shapes of the density and hazard rate functions, asymptotics and Shannon entropy. We obtain a useful linear representation of the family density and explicit expressions for the ordinary and incomplete moments, mean deviations and generating function. One special lifetime model called the Poisson power-Cauchy is defined and some of its properties are investigated. This model can have flexible hazard rate shapes such as increasing, decreasing, bathtub and upside-down bathtub. The method of maximum likelihood is used to estimate the model parameters. We illustrate the flexibility of the new distribution by means of three applications to real life data sets.  相似文献   

18.
Abstract

For non-negative integer-valued random variables, the concept of “damaged” observations was introduced, for the first time, by Rao and Rubin [Rao, C. R., Rubin, H. (1964). On a characterization of the Poisson distribution. Sankhya 26:295–298] in 1964 on a paper concerning the characterization of Poisson distribution. In 1965, Rao [Rao, C. R. (1965). On discrete distribution arising out of methods of ascertainment. Sankhya Ser. A. 27:311–324] discusses some results related with inferences for parameters of a Poisson Model when it has occurred partial destruction of observations. A random variable is said to be damaged if it is unobservable, due to a damage mechanism which randomly reduces its magnitude. In subsequent years, considerable attention has been given to characterizations of distributions of such random variables that satisfy the “Rao–Rubin” condition. This article presents some inference aspects of a damaged Poisson distribution, under reasonable assumption that, when an observation on the random variable is made, it is also possible to determine whether or not some damage has occurred. In other words, we do not know how many items are damaged, but we can identify the existence of damage. Particularly it is illustrated the situation in which it is possible to identify the occurrence of some damage although it is not possible to determine the amount of items damaged. Maximum likelihood estimators of the underlying parameters and their asymptotic covariance matrix are obtained. Convergence of the estimates of parameters to the asymptotic values are studied through Monte Carlo simulations.  相似文献   

19.
ABSTRACT

In actuarial applications, mixed Poisson distributions are widely used for modelling claim counts as observed data on the number of claims often exhibit a variance noticeably exceeding the mean. In this study, a new claim number distribution is obtained by mixing negative binomial parameter p which is reparameterized as p?=?exp( ?λ) with Gamma distribution. Basic properties of this new distribution are given. Maximum likelihood estimators of the parameters are calculated using the Newton–Raphson and genetic algorithm (GA). We compared the performance of these methods in terms of efficiency by simulation. A numerical example is provided.  相似文献   

20.
Abstract

In this paper, we introduce a surplus process involving a compound Poisson counting process, which is a generalization of the classical ruin model where the claim-counting process is a homogeneous Poisson process. The incentive is to model batch arrival of claims using a counting process that is based on a compound distribution. This reduces the difficulty of modeling claim amounts and is consistent with industrial data. Recursive formula, some properties and relevant main ruin theory results are provided. Further, we consider applications involving zero-truncated negative binomial and zero-truncated binomial batch arrivals when the claim amounts follow exponential or Erlang distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号