首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《随机性模型》2013,29(1):185-213
ABSTRACT

We consider a class of single server queueing systems in which customers arrive singly and service is provided in batches, depending on the number of customers waiting when the server becomes free. Service is independent of the batch size. This system could also be considered as a batch service queue in which a server visits the queue at arbitrary times and collects a batch of waiting customers for service, or waits for a customer to arrive if there are no waiting customers. A waiting server immediately collects and processes the first arriving customer. The system is considered in discrete time. The interarrival times of customers and the inter-visit times of the server, which we call the service time, have general distributions and are represented as remaining time Markov chains. We analyze this system using the matrix-geometric method and show that the resulting R matrix can be determined explicitly in some special cases and the stationary distributions are known semi-explicitly in some other special cases.  相似文献   

2.
《随机性模型》2013,29(3):387-424
This paper considers a single server queue that handles arrivals from N classes of customers on a non-preemptive priority basis. Each of the N classes of customers features arrivals from a Poisson process at rate λ i and class-dependent phase type service. To analyze the queue length and waiting time processes of this queue, we derive a matrix geometric solution for the stationary distribution of the underlying Markov chain. A defining characteristic of the paper is the fact that the number of distinct states represented within the sub-level is countably infinite, rather than finite as is usually assumed. Among the results we obtain in the two-priority case are tractable algorithms for the computation of both the joint distribution for the number of customers present and the marginal distribution of low-priority customers, and an explicit solution for the marginal distribution of the number of high-priority customers. This explicit solution can be expressed completely in terms of the arrival rates and parameters of the two service time distributions. These results are followed by algorithms for the stationary waiting time distributions for high- and low-priority customers. We then address the case of an arbitrary number of priority classes, which we solve by relating it to an equivalent three-priority queue. Numerical examples are also presented.  相似文献   

3.
In this paper, an M/G/1 retrial system with two classes of customers: transit and recurrent customers is studied. After service completion, recurrent customers always return to the orbit and transit customers leave the system forever. The server is subject to breakdowns and delayed repairs. The customer whose service is interrupted stays in the service, waiting for delay and repair of the server. After repair this customer completes his service. The study of the system concerns the joint generating function of the server state and the queue length in steady state. Some performance measures of the system are then derived and some numerical results are presented to illustrate the effect of the system parameters on the developed performance measures.  相似文献   

4.
Consider a multiclass M/G/1 queue where queued customers are served in their order of arrival at a rate which depends on the customer class. We model this system using a chain with states represented by a tree. Since the service time distribution depends on the customer class, the stationary distribution is not of product form so there is no simple expression for the stationary distribution. Nevertheless, we can find a harmonic function on this chain which provides information about the asymptotics of this stationary distribution. The associated h‐transformation produces a change of measure that increases the arrival rate of customers and decreases the departure rate thus making large deviations common. The Canadian Journal of Statistics 37: 327–346; 2009 © 2009 Statistical Society of Canada  相似文献   

5.
In this article, we exploit the Bayesian inference and prediction for an M/G/1 queuing model with optional second re-service. In this model, a service unit attends customers arriving following a Poisson process and demanding service according to a general distribution and some of customers need to re-service with probability “p”. First, we introduce a mixture of truncated Normal distributions on interval (? ∞, 0) to approximate the service and re-service time densities. Then, given observations of the system, we propose a Bayesian procedure based on birth-death MCMC methodology to estimate some performance measures. Finally, we apply the theories in practice by providing a numerical example based on real data which have been obtained from a hospital.  相似文献   

6.
This paper considers a single server queueing system with working breakdowns and delaying repair under a Bernoulli-schedule-controlled policy. At a breakdown instant, the system either goes to repair period immediately with probability p, or continues to provide auxiliary service for the current customers with probability q = 1 ? p. While the system resides in the auxiliary service period, it may go to repair period if there is no customer at the epoch of service completion or the occurrence of breakdown. By using the matrix analytic method and the spectral expansion method, we respectively obtain the steady state distribution to make the straightforward computation of performance measures and the Laplace-Stieltjes transform of the stationary sojourn time of an arbitrary customer. In addition, some numerical examples are presented to show the impact of parameters on the performance measures.  相似文献   

7.
《随机性模型》2013,29(2-3):485-505
ABSTRACT

We study the queue length distribution of a queueing system with BMAP arrivals under D-policy. The idle server begins to serve the customers only when the sum of the service times of all waiting customers exceeds some fixed threshold D. We derive the vector generating functions of the queue lengths both at a departure and at an arbitrary point of time. Mean queue lengths are derived and a numerical example is presented.  相似文献   

8.
《随机性模型》2013,29(3):363-380
Abstract

We study the queue length distribution of a queueing system with MAP arrivals under D-policy. The idle server begins to serve the customers only when the sum of the service times of all waiting customers exceeds some fixed threshold D. We derive the vector generating functions of the queue lengths both at a departure and at an arbitrary point of time. Mean queue lengths will be derived from these transform results. A numerical example is provided.  相似文献   

9.
ABSTRACT

In classical queueing systems, a customer is allowed to wait only in one queue to receive the service. In practice, when there exist a number of queues rendering the same service, some customers may tend to simultaneously take turn in more than one queue with the aim to receive the service sooner and thus reduce their waiting time. In this article, we introduce such a model and put forward a methodology to deal with the situation. In this regard, we consider two queues and assume that if a customer, who has turn in both queues, receives the service from one of the queues, the other turn is automatically withdrawn. This circumstance for the model brings about some abandonment in each queue as some customers receive the service from the other one. We study the customer’s waiting time in the mentioned model, which is defined as the minimum of waiting times in both queues and obtain probability density function of this random variable. Our approach to obtain probability density function of each of the waiting time random variables is to rely on the existing results for the abandonment case. We examine the situation for the cases of independence and dependence of the waiting time random variables. The latter is treated via a copula approach.  相似文献   

10.
《随机性模型》2013,29(4):415-437
Abstract

In this paper, we study the total workload process and waiting times in a queueing system with multiple types of customers and a first-come-first-served service discipline. An M/G/1 type Markov chain, which is closely related to the total workload in the queueing system, is constructed. A method is developed for computing the steady state distribution of that Markov chain. Using that steady state distribution, the distributions of total workload, batch waiting times, and waiting times of individual types of customers are obtained. Compared to the GI/M/1 and QBD approaches for waiting times and sojourn times in discrete time queues, the dimension of the matrix blocks involved in the M/G/1 approach can be significantly smaller.  相似文献   

11.
This paper studies a system with multiple infinite-server queues that are modulated by a common background process. If this background process, being modeled as a finite-state continuous-time Markov chain, is in state j, then the arrival rate into the i-th queue is λi, j, whereas the service times of customers present in this queue are exponentially distributed with mean μ? 1i, j; at each of the individual queues all customers present are served in parallel (thus reflecting their infinite-server nature).

Three types of results are presented: in the first place (i) we derive differential equations for the probability-generating functions corresponding to the distributions of the transient and stationary numbers of customers (jointly in all queues), then (ii) we set up recursions for the (joint) moments, and finally (iii) we establish a central limit theorem in the asymptotic regime in which the arrival rates as well as the transition rates of the background process are simultaneously growing large.  相似文献   

12.
Abstract

In this article, customers’ strategic behavior and social optimation in a constant retrial queue with setup time and the N-policy are investigated. Customers who find the server isn’t idle either leave forever or enter an orbit. After a service, the server will seek a customer from the orbit at a constant rate. The server is closed whenever the system becomes empty, and is activated when the number of waitlisted customers reaches a threshold. We obtain the equilibrium arrival rates in different states. There exist both Follow-the-Crowd (FTC) and Avoid-the-Crowd (ATC) behaviors. Through the Particle Swarm Optimization (PSO) algorithm, we numerically obtain the optimal solution of the social welfare maximization problem. Finally, numerical examples are presented to illustrate the sensitivity of system performance measures.  相似文献   

13.
We consider a single-server queueing system which attends to N priority classes that are classified into two distinct types: (i) urgent: classes which have preemptive resume priority over at least one lower priority class, and (ii) non-urgent: classes which only have non-preemptive priority among lower priority classes. While urgent customers have preemptive priority, the ultimate decision on whether to interrupt a current service is based on certain discretionary rules. An accumulating prioritization is also incorporated. The marginal waiting time distributions are obtained and numerical examples comparing the new model to other similar priority queueing systems are provided.  相似文献   

14.
《随机性模型》2013,29(4):527-548
Abstract

We consider a multi‐server queuing model with two priority classes that consist of multiple customer types. The customers belonging to one priority class customers are lost if they cannot be served immediately upon arrival. Each customer type has its own Poisson arrival and exponential service rate. We derive an exact method to calculate the steady state probabilities for both preemptive and nonpreemptive priority disciplines. Based on these probabilities, we can derive exact expressions for a wide range of relevant performance characteristics for each customer type, such as the moments of the number of customers in the queue and in the system, the expected postponement time and the blocking probability. We illustrate our method with some numerical examples.  相似文献   

15.
《随机性模型》2013,29(2-3):745-765
ABSTRACT

This paper presents two methods to calculate the response time distribution of impatient customers in a discrete-time queue with Markovian arrivals and phase-type services, in which the customers’ patience is generally distributed (i.e., the D-MAP/PH/1 queue). The first approach uses a GI/M/1 type Markov chain and may be regarded as a generalization of the procedure presented in Van Houdt [14] Van Houdt , B. ; Lenin , R. B. ; Blondia , C. Delay distribution of (im)patient customers in a discrete time D-MAP/PH/1 queue with age dependent service times Queueing Systems and Applications 2003 , 45 1 , 5973 . [CROSSREF]  [Google Scholar] for the D-MAP/PH/1 queue, where every customer has the same amount of patience. The key construction in order to obtain the response time distribution is to set up a Markov chain based on the age of the customer being served, together with the state of the D-MAP process immediately after the arrival of this customer. As a by-product, we can also easily obtain the queue length distribution from the steady state of this Markov chain.

We consider three different situations: (i) customers leave the system due to impatience regardless of whether they are being served or not, possibly wasting some service capacity, (ii) a customer is only allowed to enter the server if he is able to complete his service before reaching his critical age and (iii) customers become patient as soon as they are allowed to enter the server. In the second part of the paper, we reduce the GI/M/1 type Markov chain to a Quasi-Birth-Death (QBD) process. As a result, the time needed, in general, to calculate the response time distribution is reduced significantly, while only a relatively small amount of additional memory is needed in comparison with the GI/M/1 approach. We also include some numerical examples in which we apply the procedures being discussed.  相似文献   

16.
We consider an infinite buffer single server queue wherein batch interarrival and service times are correlated having a bivariate mixture of rational (R) distributions, where R denotes the class of distributions with rational Laplace–Stieltjes transform (LST), i.e., ratio of a polynomial of degree at most n to a polynomial of degree n. The LST of actual waiting time distribution has been obtained using Wiener–Hopf factorization of the characteristic equation. The virtual waiting time, idle period (actual and virtual) distributions, as well as inter-departure time distribution between two successive customers have been presented. We derive an approximate stationary queue-length distribution at different time epochs using the Markovian assumption of the service time distribution. We also derive the exact steady-state queue-length distribution at an arbitrary epoch using distributional form of Little’s law. Finally, some numerical results have been presented in the form of tables and figures.  相似文献   

17.
ABSTRACT

In this article, we consider a two-phase tandem queueing model with a second optional service and random feedback. The first phase of service is essential for all customers and after the completion of the first phase of service, any customer receives the second phase of service with probability α, feedback to the tail of the first queue with probability β if the service is not successful and leaves the system with probability 1 ? α ? β. In this model, our main purpose is to estimate the parameters of the model, traffic intensity, and mean system size, in the steady state, via maximum likelihood and Bayesian methods. Furthermore, we find asymptotic confidence intervals for mean system size. Finally, by a simulation study, we compute the confidence levels and mean length for asymptotic confidence intervals of mean system size with a nominal level 0.95.  相似文献   

18.
We explicitly compute the sojourn time distribution of an arbitrary customer in an M/M/1 processor sharing (PS) queue with permanent customers. We notably exhibit the orthogonal structure associated with this queuing system and we show how sieved Pollaczek polynomials and their associated orthogonality measure can be used to obtain an explicit representation for the complementary cumulative distribution function of the sojourn time of a customer. This explicit formula subsequently allows us to compute the two first moments of this random variable and to study the asymptotic behavior of its distribution. The most salient result is that the decay rate depends on the load of the system and the number K of permanent customers. When the load is above a certain threshold depending on K, the decay rate is identical to that of a regular M/M/1 PS queue.  相似文献   

19.
《随机性模型》2013,29(2-3):579-597
Abstract

In this paper we consider a nonpreemptive priority queue with two priority classes of customers. Customers arrive according to a batch Markovian arrival process (BMAP). In order to calculate the boundary vectors we propose a spectral method based on zeros of the determinant of a matrix function and the corresponding eigenvectors. It is proved that there are M zeros in a set Ω, where M is the size of the state space of the underlying Markov process. The zeros are calculated by the Durand-Kerner method, and the stationary joint probability of the numbers of customers of classes 1 and 2 at departures is derived by the inversion of the two-dimensional Fourier transform. For a numerical example, the stationary probability is calculated.  相似文献   

20.
《随机性模型》2013,29(1):71-84
The paper deals with the system M α /G/1/N with a finite number of waiting places in which arrivals can occur in a group. The number of customers in the line and the virtual waiting time are studied both in the transient and in the stationary regime. Special attention is paid to the stationary distributions of these functionals as N→∞. The number of customers lost during a busy period is considered as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号