首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we study the estimation and inference for a class of semiparametric mixtures of partially linear models. We prove that the proposed models are identifiable under mild conditions, and then give a PL–EM algorithm estimation procedure based on profile likelihood. The asymptotic properties for the resulting estimators and the ascent property of the PL–EM algorithm are investigated. Furthermore, we develop a test statistic for testing whether the non parametric component has a linear structure. Monte Carlo simulations and a real data application highlight the interest of the proposed procedures.  相似文献   

2.
For semiparametric models, interval estimation and hypothesis testing based on the information matrix for the full model is a challenge because of potentially unlimited dimension. Use of the profile information matrix for a small set of parameters of interest is an appealing alternative. Existing approaches for the estimation of the profile information matrix are either subject to the curse of dimensionality, or are ad-hoc and approximate and can be unstable and numerically inefficient. We propose a numerically stable and efficient algorithm that delivers an exact observed profile information matrix for regression coefficients for the class of Nonlinear Transformation Models [A. Tsodikov (2003) J R Statist Soc Ser B 65:759-774]. The algorithm deals with the curse of dimensionality and requires neither large matrix inverses nor explicit expressions for the profile surface.  相似文献   

3.
In this paper, we expand a first-order nonlinear autoregressive (AR) model with skew normal innovations. A semiparametric method is proposed to estimate a nonlinear part of model by using the conditional least squares method for parametric estimation and the nonparametric kernel approach for the AR adjustment estimation. Then computational techniques for parameter estimation are carried out by the maximum likelihood (ML) approach using Expectation-Maximization (EM) type optimization and the explicit iterative form for the ML estimators are obtained. Furthermore, in a simulation study and a real application, the accuracy of the proposed methods is verified.  相似文献   

4.
The family of power series cure rate models provides a flexible modeling framework for survival data of populations with a cure fraction. In this work, we present a simplified estimation procedure for the maximum likelihood (ML) approach. ML estimates are obtained via the expectation-maximization (EM) algorithm where the expectation step involves computation of the expected number of concurrent causes for each individual. It has the big advantage that the maximization step can be decomposed into separate maximizations of two lower-dimensional functions of the regression and survival distribution parameters, respectively. Two simulation studies are performed: the first to investigate the accuracy of the estimation procedure for different numbers of covariates and the second to compare our proposal with the direct maximization of the observed log-likelihood function. Finally, we illustrate the technique for parameter estimation on a dataset of survival times for patients with malignant melanoma.  相似文献   

5.
The shared frailty models allow for unobserved heterogeneity or for statistical dependence between observed survival data. The most commonly used estimation procedure in frailty models is the EM algorithm, but this approach yields a discrete estimator of the distribution and consequently does not allow direct estimation of the hazard function. We show how maximum penalized likelihood estimation can be applied to nonparametric estimation of a continuous hazard function in a shared gamma-frailty model with right-censored and left-truncated data. We examine the problem of obtaining variance estimators for regression coefficients, the frailty parameter and baseline hazard functions. Some simulations for the proposed estimation procedure are presented. A prospective cohort (Paquid) with grouped survival data serves to illustrate the method which was used to analyze the relationship between environmental factors and the risk of dementia.  相似文献   

6.
In this paper, we consider a new mixture of varying coefficient models, in which each mixture component follows a varying coefficient model and the mixing proportions and dispersion parameters are also allowed to be unknown smooth functions. We systematically study the identifiability, estimation and inference for the new mixture model. The proposed new mixture model is rather general, encompassing many mixture models as its special cases such as mixtures of linear regression models, mixtures of generalized linear models, mixtures of partially linear models and mixtures of generalized additive models, some of which are new mixture models by themselves and have not been investigated before. The new mixture of varying coefficient model is shown to be identifiable under mild conditions. We develop a local likelihood procedure and a modified expectation–maximization algorithm for the estimation of the unknown non‐parametric functions. Asymptotic normality is established for the proposed estimator. A generalized likelihood ratio test is further developed for testing whether some of the unknown functions are constants. We derive the asymptotic distribution of the proposed generalized likelihood ratio test statistics and prove that the Wilks phenomenon holds. The proposed methodology is illustrated by Monte Carlo simulations and an analysis of a CO2‐GDP data set.  相似文献   

7.
We consider the problem of full information maximum likelihood (FIML) estimation in factor analysis when a majority of the data values are missing. The expectation–maximization (EM) algorithm is often used to find the FIML estimates, in which the missing values on manifest variables are included in complete data. However, the ordinary EM algorithm has an extremely high computational cost. In this paper, we propose a new algorithm that is based on the EM algorithm but that efficiently computes the FIML estimates. A significant improvement in the computational speed is realized by not treating the missing values on manifest variables as a part of complete data. When there are many missing data values, it is not clear if the FIML procedure can achieve good estimation accuracy. In order to investigate this, we conduct Monte Carlo simulations under a wide variety of sample sizes.  相似文献   

8.
Abstract.  This paper develops non-parametric techniques for dynamic models whose data have unknown probability distributions. Point estimators are obtained from the maximization of a semiparametric likelihood function built on the kernel density of the disturbances. This approach can also provide Kullback–Leibler cross-validation estimates of the bandwidth of the kernel densities. Confidence regions are derived from the dual-empirical likelihood method based on non-parametric estimates of the scores. Limit theorems for martingale difference sequences support the statistical theory; moreover, simulation experiments and a real case study show the validity of the methods.  相似文献   

9.
In this paper, we develop a Bayesian estimation procedure for semiparametric models under shape constrains. The approach uses a hierarchical Bayes framework and characterizations of shape-constrained B-splines. We employ Markov chain Monte Carlo methods for model fitting, using a truncated normal distribution as the prior for the coefficients of basis functions to ensure the desired shape constraints. The small sample properties of the function estimators are provided via simulation and compared with existing methods. A real data analysis is conducted to illustrate the application of the proposed method.  相似文献   

10.
The hidden Markov model regression (HMMR) has been popularly used in many fields such as gene expression and activity recognition. However, the traditional HMMR requires the strong linearity assumption for the emission model. In this article, we propose a hidden Markov model with non-parametric regression (HMM-NR), where the mean and variance of emission model are unknown smooth functions. The new semiparametric model might greatly reduce the modeling bias and thus enhance the applicability of the traditional hidden Markov model regression. We propose an estimation procedure for the transition probability matrix and the non-parametric mean and variance functions by combining the ideas of the EM algorithm and the kernel regression. Simulation studies and a real data set application are used to demonstrate the effectiveness of the new estimation procedure.  相似文献   

11.
HIV dynamic models, a set of ordinary differential equations (ODEs), have provided new understanding of the pathogenesis of HIV infection and the treatment effects of antiviral therapies. However, to estimate parameters for ODEs is very challenging due to the complexity of this nonlinear system. In this article, we propose a comprehensive procedure to deal with this issue. In the proposed procedure, a series of cutting-edge statistical methods and techniques are employed, including nonparametric mixed-effects smoothing-based methods for ODE models and stochastic approximation expectation–maximization (EM) approach for mixed-effects ODE models. A simulation study is performed to validate the proposed approach. An application example from a real HIV clinical trial study is used to illustrate the usefulness of the proposed method.  相似文献   

12.
A model for survival analysis is studied that is relevant for samples which are subject to multiple types of failure. In comparison with a more standard approach, through the appropriate use of hazard functions and transition probabilities, the model allows for a more accurate study of cause-specific failure with regard to both the timing and type of failure. A semiparametric specification of a mixture model is employed that is able to adjust for concomitant variables and allows for the assessment of their effects on the probabilities of eventual causes of failure through a generalized logistic model, and their effects on the corresponding conditional hazard functions by employing the Cox proportional hazards model. A carefully formulated estimation procedure is presented that uses an EM algorithm based on a profile likelihood construction. The methods discussed, which could also be used for reliability analysis, are applied to a prostate cancer data set.  相似文献   

13.
An empirical likelihood method was proposed by Owen and has been extended to many semiparametric and nonparametric models with a continuous response variable. However, there has been less attention focused on the generalized regression model. This article systematically studies two adjusted empirical-likelihood-based methods in the generalized varying-coefficient partially linear models. Based on the popular profile likelihood estimation procedure, the new adjusted empirical likelihood technology for the parameter is established and the resulting statistics are shown to be asymptotically standard chi-square distributed. Further, the adjusted empirical-likelihood-based confidence regions are established, and an efficient adjusted profile empirical-likelihood-based confidence intervals/regions for any components of the parameter, which are of primary interest, is also constructed. Their asymptotic properties are also derived. Some numerical studies are carried out to illustrate the performance of the proposed inference procedures.  相似文献   

14.
In this paper, we consider two well-known parametric long-term survival models, namely, the Bernoulli cure rate model and the promotion time (or Poisson) cure rate model. Assuming the long-term survival probability to depend on a set of risk factors, the main contribution is in the development of the stochastic expectation maximization (SEM) algorithm to determine the maximum likelihood estimates of the model parameters. We carry out a detailed simulation study to demonstrate the performance of the proposed SEM algorithm. For this purpose, we assume the lifetimes due to each competing cause to follow a two-parameter generalized exponential distribution. We also compare the results obtained from the SEM algorithm with those obtained from the well-known expectation maximization (EM) algorithm. Furthermore, we investigate a simplified estimation procedure for both SEM and EM algorithms that allow the objective function to be maximized to split into simpler functions with lower dimensions with respect to model parameters. Moreover, we present examples where the EM algorithm fails to converge but the SEM algorithm still works. For illustrative purposes, we analyze a breast cancer survival data. Finally, we use a graphical method to assess the goodness-of-fit of the model with generalized exponential lifetimes.  相似文献   

15.
We propose an alternative estimation method for the semiparametric accelerated failure time mixture cure model by incorporating the profile likelihood into the M-step of the EM algorithm. The proposed method performs as well as the existing methods when the censoring is light and better than the existing methods when the censoring is moderate from the simulation studies. Regarding to the computational time, the proposed method runs faster than the existing methods.  相似文献   

16.
Jing Yang  Fang Lu  Hu Yang 《Statistics》2017,51(6):1179-1199
In this paper, we develop a new estimation procedure based on quantile regression for semiparametric partially linear varying-coefficient models. The proposed estimation approach is empirically shown to be much more efficient than the popular least squares estimation method for non-normal error distributions, and almost not lose any efficiency for normal errors. Asymptotic normalities of the proposed estimators for both the parametric and nonparametric parts are established. To achieve sparsity when there exist irrelevant variables in the model, two variable selection procedures based on adaptive penalty are developed to select important parametric covariates as well as significant nonparametric functions. Moreover, both these two variable selection procedures are demonstrated to enjoy the oracle property under some regularity conditions. Some Monte Carlo simulations are conducted to assess the finite sample performance of the proposed estimators, and a real-data example is used to illustrate the application of the proposed methods.  相似文献   

17.
Kai B  Li R  Zou H 《Annals of statistics》2011,39(1):305-332
The complexity of semiparametric models poses new challenges to statistical inference and model selection that frequently arise from real applications. In this work, we propose new estimation and variable selection procedures for the semiparametric varying-coefficient partially linear model. We first study quantile regression estimates for the nonparametric varying-coefficient functions and the parametric regression coefficients. To achieve nice efficiency properties, we further develop a semiparametric composite quantile regression procedure. We establish the asymptotic normality of proposed estimators for both the parametric and nonparametric parts and show that the estimators achieve the best convergence rate. Moreover, we show that the proposed method is much more efficient than the least-squares-based method for many non-normal errors and that it only loses a small amount of efficiency for normal errors. In addition, it is shown that the loss in efficiency is at most 11.1% for estimating varying coefficient functions and is no greater than 13.6% for estimating parametric components. To achieve sparsity with high-dimensional covariates, we propose adaptive penalization methods for variable selection in the semiparametric varying-coefficient partially linear model and prove that the methods possess the oracle property. Extensive Monte Carlo simulation studies are conducted to examine the finite-sample performance of the proposed procedures. Finally, we apply the new methods to analyze the plasma beta-carotene level data.  相似文献   

18.
Children exposed to mixtures of endocrine disrupting compounds such as phthalates are at high risk of experiencing significant friction in their growth and sexual maturation. This article is primarily motivated by a study that aims to assess the toxicants‐modified effects of risk factors related to the hazards of early or delayed onset of puberty among children living in Mexico City. To address the hypothesis of potential nonlinear modification of covariate effects, we propose a new Cox regression model with multiple functional covariate‐environment interactions, which allows covariate effects to be altered nonlinearly by mixtures of exposed toxicants. This new class of models is rather flexible and includes many existing semiparametric Cox models as special cases. To achieve efficient estimation, we develop the global partial likelihood method of inference, in which we establish key large‐sample results, including estimation consistency, asymptotic normality, semiparametric efficiency and the generalized likelihood ratio test for both parameters and nonparametric functions. The proposed methodology is examined via simulation studies and applied to the analysis of the motivating data, where maternal exposures to phthalates during the third trimester of pregnancy are found to be important risk modifiers for the age of attaining the first stage of puberty. The Canadian Journal of Statistics 47: 204–221; 2019 © 2019 Statistical Society of Canada  相似文献   

19.
Finite mixture models have provided a reasonable tool to model various types of observed phenomena, specially those which are random in nature. In this article, a finite mixture of Weibull and Pareto (IV) distribution is considered and studied. Some structural properties of the resulting model are discussed including estimation of the model parameters via expectation maximization (EM) algorithm. A real-life data application exhibits the fact that in certain situations, this mixture model might be a better alternative than the rival popular models.  相似文献   

20.
In this paper, we introduce new parametric and semiparametric regression techniques for a recurrent event process subject to random right censoring. We develop models for the cumulative mean function and provide asymptotically normal estimators. Our semiparametric model which relies on a single-index assumption can be seen as a dimension reduction technique that, contrary to a fully nonparametric approach, is not stroke by the curse of dimensionality when the number of covariates is high. We discuss data-driven techniques to choose the parameters involved in the estimation procedures and provide a simulation study to support our theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号