首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The purpose of this investigation was to estimate excess lifetime risk of lung cancer death resulting from occupational exposure to hexavalent-chromium-containing dusts and mists. The mortality experience in a previously studied cohort of 2,357 chromate chemical production workers with 122 lung cancer deaths was analyzed with Poisson regression methods. Extensive records of air samples evaluated for water-soluble total hexavalent chromium were available for the entire employment history of this cohort. Six different models of exposure-response for hexavalent chromium were evaluated by comparing deviances and inspection of cubic splines. Smoking (pack-years) imputed from cigarette use at hire was included in the model. Lifetime risks of lung cancer death from exposure to hexavalent chromium (assuming up to 45 years of exposure) were estimated using an actuarial calculation that accounts for competing causes of death. A linear relative rate model gave a good and readily interpretable fit to the data. The estimated rate ratio for 1 mg/m3-yr of cumulative exposure to hexavalent chromium (as CrO3), with a lag of five years, was RR=2.44 (95% CI=1.54-3.83). The excess lifetime risk of lung cancer death from exposure to hexavalent chromium at the current OSHA permissible exposure limit (PEL) (0.10 mg/m3) was estimated to be 255 per 1,000 (95% CI: 109-416). This estimate is comparable to previous estimates by U.S. EPA, California EPA, and OSHA using different occupational data. Our analysis predicts that current occupational standards for hexavalent chromium permit a lifetime excess risk of dying of lung cancer that exceeds 1 in 10, which is consistent with previous risk assessments.  相似文献   

2.
To develop a quantitative exposure‐response relationship between concentrations and durations of inhaled diesel engine exhaust (DEE) and increases in lung cancer risks, we examined the role of temporal factors in modifying the estimated effects of exposure to DEE on lung cancer mortality and characterized risk by mine type in the Diesel Exhaust in Miners Study (DEMS) cohort, which followed 12,315 workers through December 1997. We analyzed the data using parametric functions based on concepts of multistage carcinogenesis to directly estimate the hazard functions associated with estimated exposure to a surrogate marker of DEE, respirable elemental carbon (REC). The REC‐associated risk of lung cancer mortality in DEMS is driven by increased risk in only one of four mine types (limestone), with statistically significant heterogeneity by mine type and no significant exposure‐response relationship after removal of the limestone mine workers. Temporal factors, such as duration of exposure, play an important role in determining the risk of lung cancer mortality following exposure to REC, and the relative risk declines after exposure to REC stops. There is evidence of effect modification of risk by attained age. The modifying impact of temporal factors and effect modification by age should be addressed in any quantitative risk assessment (QRA) of DEE. Until there is a better understanding of why the risk appears to be confined to a single mine type, data from DEMS cannot reliably be used for QRA.  相似文献   

3.
Does Diesel Exhaust Cause Human Lung Cancer?   总被引:3,自引:0,他引:3  
Recent reviews of epidemiological evidence on the relation between exposure to diesel exhaust (DE) and lung cancer risk have reached conflicting conclusions, ranging from belief that there is sufficient evidence to conclude that DE is a human lung carcinogen (California EPA, 1994) to conclusions that there is inadequate evidence to support a causal association between DE and human lung cancer (Muscat and Wynder, 1995). Individual studies also conflict, with both increases and decreases in relative risks of lung cancer mortality being cited with 95% statistical confidence. On balance, reports of elevated risk outnumber reports of reduced risk. This paper reexamines the evidence linking DE exposures to lung cancer risk. After briefly reviewing animal data and biological mechanisms, it surveys the relevant epidemiological literature and examines possible explanations for the discrepancies. These explanations emphasize the distinction between statistical associations, which have been found in many studies, and causal associations, which appear not to have been established. Methodological threats to valid causal inference are identified and new approaches for controlling them are proposed using recent techniques from artificial intelligence (AI) and computational statistics. These threats have not been adequately controlled for in previous epidemiological studies. They provide plausible noncausal explanations for the reported increases in relative risks, making it impossible to infer causality between DE exposure and lung cancer risk from these studies. A key contribution is to show how recent techniques developed in the AI-and-statistics literature can help clarify the causal interpretation of complex multivariate data sets used in epidemiological risk assessments. Applied to the key study of Garshick et al. (1988), these methods show that DE concentration has no positive causal association with occupational lung cancer mortality risk.  相似文献   

4.
This study evaluates the dose-response relationship for inhalation exposure to hexavalent chromium [Cr(VI)] and lung cancer mortality for workers of a chromate production facility, and provides estimates of the carcinogenic potency. The data were analyzed using relative risk and additive risk dose-response models implemented with both Poisson and Cox regression. Potential confounding by birth cohort and smoking prevalence were also assessed. Lifetime cumulative exposure and highest monthly exposure were the dose metrics evaluated. The estimated lifetime additional risk of lung cancer mortality associated with 45 years of occupational exposure to 1 microg/m3 Cr(VI) (occupational exposure unit risk) was 0.00205 (90%CI: 0.00134, 0.00291) for the relative risk model and 0.00216 (90%CI: 0.00143, 0.00302) for the additive risk model assuming a linear dose response for cumulative exposure with a five-year lag. Extrapolating these findings to a continuous (e.g., environmental) exposure scenario yielded an environmental unit risk of 0.00978 (90%CI: 0.00640, 0.0138) for the relative risk model [e.g., a cancer slope factor of 34 (mg/kg-day)-1] and 0.0125 (90%CI: 0.00833, 0.0175) for the additive risk model. The relative risk model is preferred because it is more consistent with the expected trend for lung cancer risk with age. Based on statistical tests for exposure-related trend, there was no statistically significant increased lung cancer risk below lifetime cumulative occupational exposures of 1.0 mg-yr/m3, and no excess risk for workers whose highest average monthly exposure did not exceed the current Permissible Exposure Limit (52 microg/m3). It is acknowledged that this study had limited power to detect increases at these low exposure levels. These cancer potency estimates are comparable to those developed by U.S. regulatory agencies and should be useful for assessing the potential cancer hazard associated with inhaled Cr(VI).  相似文献   

5.
The International Agency for Research on Cancer (IARC) in 2012 upgraded its hazard characterization of diesel engine exhaust (DEE) to “carcinogenic to humans.” The Diesel Exhaust in Miners Study (DEMS) cohort and nested case‐control studies of lung cancer mortality in eight U.S. nonmetal mines were influential in IARC's determination. We conducted a reanalysis of the DEMS case‐control data to evaluate its suitability for quantitative risk assessment (QRA). Our reanalysis used conditional logistic regression and adjusted for cigarette smoking in a manner similar to the original DEMS analysis. However, we included additional estimates of DEE exposure and adjustment for radon exposure. In addition to applying three DEE exposure estimates developed by DEMS, we applied six alternative estimates. Without adjusting for radon, our results were similar to those in the original DEMS analysis: all but one of the nine DEE exposure estimates showed evidence of an association between DEE exposure and lung cancer mortality, with trend slopes differing only by about a factor of two. When exposure to radon was adjusted, the evidence for a DEE effect was greatly diminished, but was still present in some analyses that utilized the three original DEMS DEE exposure estimates. A DEE effect was not observed when the six alternative DEE exposure estimates were utilized and radon was adjusted. No consistent evidence of a DEE effect was found among miners who worked only underground. This article highlights some issues that should be addressed in any use of the DEMS data in developing a QRA for DEE.  相似文献   

6.
An estimation of the human lung cancer “unit risk” from diesel engine particulate emissions has been made using a comparative potency approach. This approach involves evaluating the tumorigenic and mutagenic potencies of the particulates from four diesel and one gasoline engine in relation to other combustion and pyrolysis products (coke oven, roofing tar, and cigarette smoke) that cause lung cancer in humans. The unit cancer risk is predicated on the linear nonthreshold extrapolation model and is the individual lifetime excess lung cancer risk from continuous exposure to 1 μg carcinogen per m3 inhaled air. The human lung cancer unit risks obtained from the epidemiologic data for coke oven workers, roofing tar applicators, and cigarette smokers were, respectively, 9.3 × 10?4, 3.6 × 10?4, and 2.2 × 10?6 per μg particulate organics per m3 air. The comparative potencies of these three materials and the diesel and gasoline engine exhaust particulates (as organic extracts) were evaluated by in vivo tumorigenicity bioassays involving skin initiation and skin carcinogenicity in SENCAR mice and by the in vitro bioassays that proved suitable for this analysis: Ames Salmonella microsome bioassay, L5178Y mouse lymphoma cell mutagenesis bioassay, and sister chromatid exchange bioassay in Chinese hamster ovary cells. The relative potencies of the coke oven, roofing tar, and cigarette smoke emissions, as determined by the mouse skin initiation assay, were within a factor of 2 of those determined using the epidemiologic data. The relative potencies, from the in vitro bioassays as compared to the human data, were similar for coke oven and roofing tar, but for the cigarette smoke condensate the in vitro tests predicted a higher relative potency. The mouse skin initiation bioassay was used to determine the unit lung cancer risk for the most potent of the diesel emissions. Based on comparisons with coke oven, roofing tar, and cigarette smoke, the unit cancer risk averaged 4.4 × 10?4. The unit lung cancer risks for the other, less potent motor-vehicle emissions were determined from their comparative potencies relative to the most potent diesel using three in vitro bioassays. There was a high correlation between the in vitro and in vivo bioassays in their responses to the engine exhaust particulate extracts. The unit lung cancer risk per μg particulates per m3 for the automotive diesel and gasoline exhaust particulates ranged from 0.20 × 10?4 to 0.60 × 10?4; that for the heavy-duty diesel engine was 0.02 × 10?4. These unit risks provide the basis for a future assessment of human lung cancer risks when combined with human population exposure to automotive emissions.  相似文献   

7.
This paper uses two different methods to assess the potential risk of human lung cancer from exposure to diesel engine emissions. One method analyzes the best available epidemiological evidence on the lung cancer risks of persons exposed in their occupations to diesel engine emissions. The second conducts a comparative analysis of laboratory and epidemiological data on diesel engine emissions and two chemically related environmental exposures–coke oven emissions and roofing tar emissions. The estimates of potential risk derived from these two distinct methods are compared. The sources of uncertainty in each method are explicitly characterized. The value of these estimates for comparing the potential lung cancer risks from exposure to diesel engine emissions with other personal and societal risks are discussed. Also considered are the limitations of these results in predicting the possible excess incidence of lung cancer from ambient exposure to diesel emissions.  相似文献   

8.
The purpose of this paper is to review briefly the evidence for potential human health effects that may result from increased dieselization of the nation's light-duty vehicle fleet. An effort is made to put the potential effects into perspective, both with regard to projected excess cancer deaths, should diesel exhaust be carcinogenic to humans, and in relation to past use of vehicles using leaded gasoline. Certain related research needs are highlighted. Available data concerning the relationship between diesel emissions, ambient air quality, and human health are summarized. On the basis of exposure estimates and relative potency factors, the authors conclude that the best estimate of the number of excess annual U.S. lung cancer deaths as a result of lifetime exposure to light-duty diesel particulate under 1990 conditions is between 80 and 1500. Available data suggest that the carcinogenic hazard of exhaust from vehicles burning leaded gasoline may be an order of magnitude greater, on a per mile basis, than that of diesel engines. The hazard of emissions from diesel are, in turn, probably an order of magnitude greater than that of gasoline engines with catalytic converters burning unleaded gasoline. Important research needs identified by the authors include determining whether diesel exhaust is in fact a human carcinogen, studying the effect of atmospheric chemical transformation of organics in diesel exhaust on the toxicity of the exhaust, making a better determination of the relative carcinogenicity of diesel and gasoline exhausts, and determining whether exposure to diesel exhaust contributes to the development or exacerbation of chronic lung disease or of respiratory illness, especially in the very young and the aged.  相似文献   

9.
Ethylene oxide (EO) has been identified as a carcinogen in laboratory animals. Although the precise mechanism of action is not known, tumors in animals exposed to EO are presumed to result from its genotoxicity. The overall weight of evidence for carcinogenicity from a large body of epidemiological data in the published literature remains limited. There is some evidence for an association between EO exposure and lympho/hematopoietic cancer mortality. Of these cancers, the evidence provided by two large cohorts with the longest follow-up is most consistent for leukemia. Together with what is known about human leukemia and EO at the molecular level, there is a body of evidence that supports a plausible mode of action for EO as a potential leukemogen. Based on a consideration of the mode of action, the events leading from EO exposure to the development of leukemia (and therefore risk) are expected to be proportional to the square of the dose. In support of this hypothesis, a quadratic dose-response model provided the best overall fit to the epidemiology data in the range of observation. Cancer dose-response assessments based on human and animal data are presented using three different assumptions for extrapolating to low doses: (1) risk is linearly proportionate to dose; (2) there is no appreciable risk at low doses (margin-of-exposure or reference dose approach); and (3) risk below the point of departure continues to be proportionate to the square of the dose. The weight of evidence for EO supports the use of a nonlinear assessment. Therefore, exposures to concentrations below 37 microg/m3 are not likely to pose an appreciable risk of leukemia in human populations. However, if quantitative estimates of risk at low doses are desired and the mode of action for EO is considered, these risks are best quantified using the quadratic estimates of cancer potency, which are approximately 3.2- to 32-fold lower, using alternative points of departure, than the linear estimates of cancer potency for EO. An approach is described for linking the selection of an appropriate point of departure to the confidence in the proposed mode of action. Despite high confidence in the proposed mode of action, a small linear component for the dose-response relationship at low concentrations cannot be ruled out conclusively. Accordingly, a unit risk value of 4.5 x 10(-8) (microg/m3)(-1) was derived for EO, with a range of unit risk values of 1.4 x 10(-8) to 1.4 x 10(-7) (microg/m3)(-1) reflecting the uncertainty associated with a theoretical linear term at low concentrations.  相似文献   

10.
Biwer  Bruce M.  Butler  James P. 《Risk analysis》1999,19(6):1157-1171
When the transportation risk posed by shipments of hazardous chemical and radioactive materials is being assessed, it is necessary to evaluate the risks associated with both vehicle emissions and cargo-related risks. Diesel exhaust and fugitive dust emissions from vehicles transporting hazardous shipments lead to increased air pollution, which increases the risk of latent fatalities in the affected population along the transport route. The estimated risk from these vehicle-related sources can often be as large or larger than the estimated risk associated with the material being transported. In this paper, data from the U.S. Environmental Protection Agency's Motor Vehicle-Related Air Toxics Study are first used to develop latent cancer fatality estimates per kilometer of travel in rural and urban areas for all diesel truck classes. These unit risk factors are based on studies investigating the carcinogenic nature of diesel exhaust. With the same methodology, the current per-kilometer latent fatality risk factor used in transportation risk assessments for heavy diesel trucks in urban areas is revised and the analysis expanded to provide risk factors for rural areas and all diesel truck classes. These latter fatality estimates may include, but are not limited to, cancer fatalities and are based primarily on the most recent epidemiological data available on mortality rates associated with ambient air PM-10 concentrations.  相似文献   

11.
The extensive data from the Blair et al.((1)) epidemiology study of occupational acrylonitrile exposure among 25460 workers in eight plants in the United States provide an excellent opportunity to update quantitative risk assessments for this widely used commodity chemical. We employ the semiparametric Cox relative risk (RR) regression model with a cumulative exposure metric to model cause-specific mortality from lung cancer and all other causes. The separately estimated cause-specific cumulative hazards are then combined to provide an overall estimate of age-specific mortality risk. Age-specific estimates of the additional risk of lung cancer mortality associated with several plausible occupational exposure scenarios are obtained. For age 70, these estimates are all markedly lower than those generated with the cancer potency estimate provided in the USEPA acrylonitrile risk assessment.((2)) This result is consistent with the failure of recent occupational studies to confirm elevated lung cancer mortality among acrylonitrile-exposed workers as was originally reported by O'Berg,((3)) and it calls attention to the importance of using high-quality epidemiology data in the risk assessment process.  相似文献   

12.
We reanalyzed the Libby vermiculite miners’ cohort assembled by Sullivan to estimate potency factors for lung cancer, mesothelioma, nonmalignant respiratory disease (NMRD), and all‐cause mortality associated with exposure to Libby fibers. Our principal statistical tool for analyses of lung cancer, NMRD, and total mortality in the cohort was the time‐dependent proportional hazards model. For mesothelioma, we used an extension of the Peto formula. For a cumulative exposure to Libby fiber of 100 f/mL‐yr, our estimates of relative risk (RR) are as follows: lung cancer, RR = 1.12, 95% confidence interval (CI) =[1.06, 1.17]; NMRD, RR = 1.14, 95% CI =[1.09, 1.18]; total mortality, RR = 1.06, 95% CI =[1.04, 1.08]. These estimates were virtually identical when analyses were restricted to the subcohort of workers who were employed for at least one year. For mesothelioma, our estimate of potency is KM = 0.5 × 10?8, 95% CI =[0.3 × 10?8, 0.8 × 10?8]. Finally, we estimated the mortality ratios standardized against the U.S. population for lung cancer, NMRD, and total mortality and obtained estimates that were in good agreement with those reported by Sullivan. The estimated potency factors form the basis for a quantitative risk assessment at Libby.  相似文献   

13.
Kenneth T. Bogen 《Risk analysis》2014,34(10):1780-1784
A 2009 report of the National Research Council (NRC) recommended that the U.S. Environmental Protection Agency (EPA) increase its estimates of increased cancer risk from exposure to environmental agents by ~7‐fold, due to an approximate ~25‐fold typical ratio between the median and upper 95th percentile persons’ cancer sensitivity assuming approximately lognormally distributed sensitivities. EPA inaction on this issue has raised concerns that cancer risks to environmentally exposed populations remain systematically underestimated. This concern is unwarranted, however, because EPA point estimates of cancer risk have always pertained to the average, not the median, person in each modeled exposure group. Nevertheless, EPA has yet to explain clearly how its risk characterization and risk management policies concerning individual risks from environmental chemical carcinogens do appropriately address broad variability in human cancer susceptibility that has been a focus of two major NRC reports to EPA concerning its risk assessment methods.  相似文献   

14.
Risk assessments for carcinogens are being developed through an accelerated process in California as a part of the state's implementation of Proposition 65, the Safe Drinking Water and Toxic Enforcement Act. Estimates of carcinogenic potency made by the California Department of Health Services (CDHS) are generally similar to estimates made by the U.S. Environmental Protection Agency (EPA). The largest differences are due to EPA's use of the maximum likelihood estimate instead of CDHS' use of the upper 95% confidence bounds on potencies derived from human data and to procedures used to correct for studies of short duration or with early mortality. Numerical limits derived from these potency estimates constitute "no significant risk" levels, which govern exemption from Proposition 65's discharge prohibition and warning requirements. Under Proposition 65 regulations, lifetime cancer risks less than 10(-5) are not significant and cumulative intake is not considered. Following these regulations, numerical limits for a number of Proposition 65 carcinogens that are applicable to the control of toxic discharges are less stringent than limits under existing federal water pollution control laws. Thus, existing federal limits will become the Proposition 65 levels for discharge. Chemicals currently not covered by federal and state controls will eventually be subject to discharge limitations under Proposition 65. "No significant risk" levels (expressed in terms of daily intake of carcinogens) also trigger warning requirements under Proposition 65 that are more extensive than existing state or federal requirements. A variety of chemical exposures from multiple sources are identified that exceed Proposition 65's "no significant risk" levels.  相似文献   

15.
Aggregate exposure metrics based on sums or weighted averages of component exposures are widely used in risk assessments of complex mixtures, such as asbestos-associated dusts and fibers. Allowed exposure levels based on total particle or fiber counts and estimated ambient concentrations of such mixtures may be used to make costly risk-management decisions intended to protect human health and to remediate hazardous environments. We show that, in general, aggregate exposure information alone may be inherently unable to guide rational risk-management decisions when the components of the mixture differ significantly in potency and when the percentage compositions of the mixture exposures differ significantly across locations. Under these conditions, which are not uncommon in practice, aggregate exposure metrics may be "worse than useless," in that risk-management decisions based on them are less effective than decisions that ignore the aggregate exposure information and select risk-management actions at random. The potential practical significance of these results is illustrated by a case study of 27 exposure scenarios in El Dorado Hills, California, where applying an aggregate unit risk factor (from EPA's IRIS database) to aggregate exposure metrics produces average risk estimates about 25 times greater - and of uncertain predictive validity - compared to risk estimates based on specific components of the mixture that have been hypothesized to pose risks of human lung cancer and mesothelioma.  相似文献   

16.
The detailed work histories of the individual workers composing the Pliofilm cohort represent a unique resource for estimating the dose-respoonse for leukemia that may follow occupational exposure to benzene. In this paper, we report the results of analyzing the updated Pliofilm cohort using the proportional hazards model, a more sophisticated technique that uses more of the available exposure data than the conditional logistic model used by Rinsky et al. The more rigorously defined exposure estimates derived by Paustenbach et al. are consistent with those of Crump and Allen in giving estimates of the slope of the leukemogenic dose-response that are not as steep as the slope resulting from the exposure estimates of Rinsky et al. We consider estimates of 0.3-0.5 additional leukemia deaths per thousand workers with 45 ppm-years of cumulative benzene exposure to be the best estimates currently available of leukemia risk from occupational exposure to benzene. These risks were estimated in the proportional hazards model when the exposure estimates of Crump and Allen or of Paustenbach et al. were used to derive a cumulative concentration-by-time metric.  相似文献   

17.
We review approaches for characterizing “peak” exposures in epidemiologic studies and methods for incorporating peak exposure metrics in dose–response assessments that contribute to risk assessment. The focus was on potential etiologic relations between environmental chemical exposures and cancer risks. We searched the epidemiologic literature on environmental chemicals classified as carcinogens in which cancer risks were described in relation to “peak” exposures. These articles were evaluated to identify some of the challenges associated with defining and describing cancer risks in relation to peak exposures. We found that definitions of peak exposure varied considerably across studies. Of nine chemical agents included in our review of peak exposure, six had epidemiologic data used by the U.S. Environmental Protection Agency (US EPA) in dose–response assessments to derive inhalation unit risk values. These were benzene, formaldehyde, styrene, trichloroethylene, acrylonitrile, and ethylene oxide. All derived unit risks relied on cumulative exposure for dose–response estimation and none, to our knowledge, considered peak exposure metrics. This is not surprising, given the historical linear no‐threshold default model (generally based on cumulative exposure) used in regulatory risk assessments. With newly proposed US EPA rule language, fuller consideration of alternative exposure and dose–response metrics will be supported. “Peak” exposure has not been consistently defined and rarely has been evaluated in epidemiologic studies of cancer risks. We recommend developing uniform definitions of “peak” exposure to facilitate fuller evaluation of dose response for environmental chemicals and cancer risks, especially where mechanistic understanding indicates that the dose response is unlikely linear and that short‐term high‐intensity exposures increase risk.  相似文献   

18.
Estimation of Unit Risk for Coke Oven Emissions   总被引:1,自引:0,他引:1  
In 1984, based on epidemiological data on cohorts of coke oven workers, USEPA estimated a unit risk for lung cancer associated with continuous exposure from birth to 1 pg/m3 of coke oven emissions, of 6.2 × This risk assessment was based on information on the cohorts available through 1966. Follow-up of these cohorts has now been extended to 1982 and, moreover, individual job histories, which were not available in 1984, have been constructed. In this study, lung cancer mortality in these cohorts of coke oven workers with extended follow-up was analyzed using standard techniques of survival analysis and a new approach based on the two stage clonal expansion model of carcinogenesis. The latter approach allows the explicit consideration of detailed patterns of exposure of each individual in the cohort. The analyses used the extended follow-up data through 1982 and the detailed job histories now available. Based on these analyses, the best estimate of unit risk is 1.5 × with 95% confidence interval = 1.2 × 10-"1.8 X  相似文献   

19.
In 2001, the U.S. Environmental Protection Agency derived a reference dose (RfD) for methylmercury, which is a daily intake that is likely to be without appreciable risk of deleterious effects during a lifetime. This derivation used a series of benchmark dose (BMD) analyses provided by a National Research Council (NRC) panel convened to assess the health effects of methylmercury. Analyses were performed for a number of endpoints from three large longitudinal cohort studies of the neuropsychological consequences of in utero exposure to methylmercury: the Faroe Islands, Seychelles Islands, and New Zealand studies. Adverse effects were identified in the Faroe Islands and New Zealand studies, but not in the Seychelles Islands. The NRC also performed an integrative analysis of all three studies. The EPA applied a total uncertainty factor (UF) of 10 for intrahuman toxicokinetic and toxicodynamic variability and uncertainty. Dose conversion from cord blood mercury concentrations to maternal methylmercury intake was performed using a one-compartment model. Derivation of potential RfDs from a number of endpoints from the Faroe Islands study converged on 0.1 microg/kg/day, as did the integrative analysis of all three studies. EPA identified several areas for which further information or analyses is needed. Perhaps the most immediately relevant is the ratio of cord:maternal blood mercury concentration, as well as the variability around this ratio. EPA assumed in its dose conversion that the ratio was 1.0; however, available data suggest it is perhaps 1.5-2.0. Verification of a deviation from unity presumably would be translated directly into comparable reduction in the RfD. Other areas that EPA identified as significant areas requiring further attention are cardiovascular consequences of methylmercury exposure and delayed neurotoxicity during aging as a result of previous developmental or adult exposure.  相似文献   

20.
The exposure-response relationship for airborne hexavalent chromium exposure and lung cancer mortality is well described by a linear relative rate model. However, categorical analyses have been interpreted to suggest the presence of a threshold. This study investigates nonlinear features of the exposure response in a cohort of 2,357 chemical workers with 122 lung cancer deaths. In Poisson regression, a simple model representing a two-step carcinogenesis process was evaluated. In a one-stage context, fractional polynomials were investigated. Cumulative exposure dose metrics were examined corresponding to cumulative exposure thresholds, exposure intensity (concentration) thresholds, dose-rate effects, and declining burden of accumulated effect on future risk. A simple two-stage model of carcinogenesis provided no improvement in fit. The best-fitting one-stage models used simple cumulative exposure with no threshold for exposure intensity and had sufficient power to rule out thresholds as large as 30 microg/m3 CrO3 (16 microg/m3 as Cr+6) (one-sided 95% confidence limit, likelihood ratio test). Slightly better-fitting models were observed with cumulative exposure thresholds of 0.03 and 0.5 mg-yr/m3 (as CrO3) with and without an exposure-race interaction term, respectively. With the best model, cumulative exposure thresholds as large as 0.4 mg-yr/m3 CrO3 were excluded (two-sided upper 95% confidence limit, likelihood ratio test). A small departure from dose-rate linearity was observed, corresponding to (intensity)0.8 but was not statistically significant. Models in which risk-inducing damage burdens declined over time, based on half-lives ranging from 0.1 to 40 years, fit less well than assuming a constant burden. A half-life of 8 years or less was excluded (one-sided 95% confidence limit). Examination of nonlinear features of the hexavalent chromium-lung cancer exposure response in a population used in a recent risk assessment supports using the traditional (lagged) cumulative exposure paradigm: no intensity (concentration) threshold, linearity in intensity, and constant increment in risk following exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号