首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Let [^(\varveck)]{\widehat{\varvec{\kappa}}} and [^(\varveck)]r{\widehat{\varvec{\kappa}}_r} denote the best linear unbiased estimators of a given vector of parametric functions \varveck = \varvecKb{\varvec{\kappa} = \varvec{K\beta}} in the general linear models M = {\varvecy, \varvecX\varvecb, s2\varvecV}{{\mathcal M} = \{\varvec{y},\, \varvec{X\varvec{\beta}},\, \sigma^2\varvec{V}\}} and Mr = {\varvecy, \varvecX\varvecb | \varvecR \varvecb = \varvecr, s2\varvecV}{{\mathcal M}_r = \{\varvec{y},\, \varvec{X}\varvec{\beta} \mid \varvec{R} \varvec{\beta} = \varvec{r},\, \sigma^2\varvec{V}\}}, respectively. A bound for the Euclidean distance between [^(\varveck)]{\widehat{\varvec{\kappa}}} and [^(\varveck)]r{\widehat{\varvec{\kappa}}_r} is expressed by the spectral distance between the dispersion matrices of the two estimators, and the difference between sums of squared errors evaluated in the model M{{\mathcal M}} and sub-restricted model Mr*{{\mathcal M}_r^*} containing an essential part of the restrictions \varvecR\varvecb = \varvecr{\varvec{R}\varvec{\beta} = \varvec{r}} with respect to estimating \varveck{\varvec{\kappa}}.  相似文献   

2.
We consider the linear regression modely=Xβ+u with prior information on the unknown parameter vector β. The additional information on β is given by a fuzzy set. Using the mean squared error criterion we derive linear estimators that optimally combine the data with the fuzzy prior information. Our approach generalizes the classical minimax procedure firstly proposed by Kuks and Olman.  相似文献   

3.
The general mixed linear model can be written y =  + Zu + e, where β is a vector of fixed effects, u is a vector of random effects and e is a vector of random errors. In this note, we mainly aim at investigating the general necessary and sufficient conditions under which the best linear unbiased estimator for \varvec r(\varvec l, \varvec m) = \varvec l\varvec ¢\varvec b+\varvec m\varvec ¢\varvec u{\varvec \varrho}({\varvec l}, {\varvec m}) = {\varvec l}{\varvec '}{\varvec \beta}+{\varvec m}{\varvec '}{\varvec u} is also optimal under the misspecified model. In addition, we offer approximate conclusions in some special situations including a random regression model.  相似文献   

4.
The approach to preliminary test estimation based on comparing the weighted quadratic risk function of two competing estimators of β under the linear regression model {y,Xβ, σ2 I} is extended to the case when a given vector of parametric functions κ=Kβ is to be estimated under the general Gauss-Markov model.  相似文献   

5.
Improvement of the Liu estimator in linear regression model   总被引:2,自引:0,他引:2  
In the presence of stochastic prior information, in addition to the sample, Theil and Goldberger (1961) introduced a Mixed Estimator for the parameter vector β in the standard multiple linear regression model (T,2 I). Recently, the Liu estimator which is an alternative biased estimator for β has been proposed by Liu (1993). In this paper we introduce another new Liu type biased estimator called Stochastic restricted Liu estimator for β, and discuss its efficiency. The necessary and sufficient conditions for mean squared error matrix of the Stochastic restricted Liu estimator to exceed the mean squared error matrix of the mixed estimator will be derived for the two cases in which the parametric restrictions are correct and are not correct. In particular we show that this new biased estimator is superior in the mean squared error matrix sense to both the Mixed estimator and to the biased estimator introduced by Liu (1993).  相似文献   

6.
Summary Let , whereX i are i.i.d. random variables with a finite variance σ2 and is the usual estimate of the mean ofX i. We consider the problem of finding optimal α with respect to the minimization of the expected value of |S 2(σ)−σ2|k for variousk and with respect to Pitman's nearness criterion. For the Gaussian case analytical results are obtained and for some non-Gaussian cases we present Monte Carlo results regarding Pitman's criteron. This research was supported by Science Fund of Serbia, grant number 04M03, through Mathematical Institute, Belgrade.  相似文献   

7.
Gnot et al. (J Statist Plann Inference 30(1):223–236, 1992) have presented the formulae for computing Bayes invariant quadratic estimators of variance components in normal mixed linear models of the form where the matrices V i , 1 ≤ ik − 1, are symmetric and nonnegative definite and V k is an identity matrix. These formulae involve a basis of a quadratic subspace containing MV 1 M,...,MV k-1 M,M, where M is an orthogonal projector on the null space of X′. In the paper we discuss methods of construction of such a basis. We survey Malley’s algorithms for finding the smallest quadratic subspace including a given set of symmetric matrices of the same order and propose some modifications of these algorithms. We also consider a class of matrices sharing some of the symmetries common to MV 1 M,...,MV k-1 M,M. We show that the matrices from this class constitute a quadratic subspace and describe its explicit basis, which can be directly used for computing Bayes invariant quadratic estimators of variance components. This basis can be also used for improving the efficiency of Malley’s algorithms when applied to finding a basis of the smallest quadratic subspace containing the matrices MV 1 M,...,MV k-1 M,M. Finally, we present the results of a numerical experiment which confirm the potential usefulness of the proposed methods. Dedicated to the memory of Professor Stanisław Gnot.  相似文献   

8.
Consider a family of distributions which is invariant under a group of transformations. In this paper, we define an optimality criterion with respect to an arbitrary convex loss function and we prove a characterization theorem for an equivariant estimator to be optimal. Then we consider a linear model Y=Xβ+ε, in which ε has a multivariate distribution with mean vector zero and has a density belonging to a scale family with scale parameter σ. Also we assume that the underlying family of distributions is invariant with respect to a certain group of transformations. First, we find the class of all equivariant estimators of regression parameters and the powers of σ. By using the characterization theorem we discuss the simultaneous equivariant estimation of the parameters of the linear model.  相似文献   

9.
Arnold and Stahlecker (Stat Pap 44:107–115, 2003) considered the prediction of future values of the dependent variable in the linear regression model with a relative squared error and deterministic disturbances. They found an explicit form for a minimax linear affine solution d* of that problem. In the paper we generalize this result proving that the decision rule d* is also minimax when the class D{\mathcal{D}} of possible predictors of the dependent variable is unrestricted. Then we show that d* remains minimax in D{\mathcal{D}} when the disturbances are random with the mean vector zero and the known positive definite covariance matrix.  相似文献   

10.
Let {X, Xn; n ≥ 1} be a sequence of real-valued iid random variables, 0 < r < 2 and p > 0. Let D = { A = (ank; 1 ≤ kn, n ≥ 1); ank, ? R and supn, k |an,k| < ∞}. Set Sn( A ) = ∑nk=1an, kXk for A ? D and n ≥ 1. This paper is devoted to determining conditions whereby E{supn ≥ 1, |Sn( A )|/n1/r}p < ∞ or E{supn ≥ 2 |Sn( A )|/2n log n)1/2}p < ∞ for every A ? D. This generalizes some earlier results, including those of Burkholder (1962), Choi and Sung (1987), Davis (1971), Gut (1979), Klass (1974), Siegmund (1969) and Teicher (1971).  相似文献   

11.
LetF(x,y) be a distribution function of a two dimensional random variable (X,Y). We assume that a distribution functionF x(x) of the random variableX is known. The variableX will be called an auxiliary variable. Our purpose is estimation of the expected valuem=E(Y) on the basis of two-dimensional simple sample denoted by:U=[(X 1, Y1)…(Xn, Yn)]=[X Y]. LetX=[X 1X n]andY=[Y 1Y n].This sample is drawn from a distribution determined by the functionF(x,y). LetX (k)be the k-th (k=1, …,n) order statistic determined on the basis of the sampleX. The sampleU is truncated by means of this order statistic into two sub-samples: % MathType!End!2!1! and % MathType!End!2!1!.Let % MathType!End!2!1! and % MathType!End!2!1! be the sample means from the sub-samplesU k,1 andU k,2, respectively. The linear combination % MathType!End!2!1! of these means is the conditional estimator of the expected valuem. The coefficients of this linear combination depend on the distribution function of auxiliary variable in the pointx (k).We can show that this statistic is conditionally as well as unconditionally unbiased estimator of the averagem. The variance of this estimator is derived. The variance of the statistic % MathType!End!2!1! is compared with the variance of the order sample mean. The generalization of the conditional estimation of the mean is considered, too.  相似文献   

12.
Let Z 1, Z 2, . . . be a sequence of independent Bernoulli trials with constant success and failure probabilities p = Pr(Z t  = 1) and q = Pr(Z t  = 0) = 1 − p, respectively, t = 1, 2, . . . . For any given integer k ≥ 2 we consider the patterns E1{\mathcal{E}_{1}}: two successes are separated by at most k−2 failures, E2{\mathcal{E}_{2}}: two successes are separated by exactly k −2 failures, and E3{\mathcal{E}_{3}} : two successes are separated by at least k − 2 failures. Denote by Nn,k(i){ N_{n,k}^{(i)}} (respectively Mn,k(i){M_{n,k}^{(i)}}) the number of occurrences of the pattern Ei{\mathcal{E}_{i}} , i = 1, 2, 3, in Z 1, Z 2, . . . , Z n when the non-overlapping (respectively overlapping) counting scheme for runs and patterns is employed. Also, let Tr,k(i){T_{r,k}^{(i)}} (resp. Wr,k(i)){W_{r,k}^{(i)})} be the waiting time for the rth occurrence of the pattern Ei{\mathcal{E}_{i}}, i = 1, 2, 3, in Z 1, Z 2, . . . according to the non-overlapping (resp. overlapping) counting scheme. In this article we conduct a systematic study of Nn,k(i){N_{n,k}^{(i)}}, Mn,k(i){M_{n,k}^{(i)}}, Tr,k(i){T_{r,k}^{(i)}} and Wr,k(i){W_{r,k}^{(i)}} (i = 1, 2, 3) obtaining exact formulae, explicit or recursive, for their probability generating functions, probability mass functions and moments. An application is given.  相似文献   

13.
In this paper, by considering a (3n+1) -dimensional random vector (X0, XT, YT, ZT)T having a multivariate elliptical distribution, we derive the exact joint distribution of (X0, aTX(n), bTY[n], cTZ[n])T, where a, b, c∈?n, X(n)=(X(1), …, X(n))T, X(1)<···<X(n), is the vector of order statistics arising from X, and Y[n]=(Y[1], …, Y[n])T and Z[n]=(Z[1], …, Z[n])T denote the vectors of concomitants corresponding to X(n) ((Y[r], Z[r])T, for r=1, …, n, is the vector of bivariate concomitants corresponding to X(r)). We then present an alternate approach for the derivation of the exact joint distribution of (X0, X(r), Y[r], Z[r])T, for r=1, …, n. We show that these joint distributions can be expressed as mixtures of four-variate unified skew-elliptical distributions and these mixture forms facilitate the prediction of X(r), say, based on the concomitants Y[r] and Z[r]. Finally, we illustrate the usefulness of our results by a real data.  相似文献   

14.
Fix r ≥ 1, and let {Mnr} be the rth largest of {X1,X2,…Xn}, where X1,X2,… is a sequence of i.i.d. random variables with distribution function F. It is proved that P[Mnr ≤ un i.o.] = 0 or 1 according as the series Σn=3Fn(un)(log log n)r/n converges or diverges, for any real sequence {un} such that n{1 -F(un)} is nondecreasing and divergent. This generalizes a result of Bamdorff-Nielsen (1961) in the case r = 1.  相似文献   

15.
For given real functionsg andh, first we give necessary and sufficient conditions such that there exists a random variableX satisfying thatE(g(X)|X≥y)=h(y)r x (y),∀y ∈ C x , whereC x andT X are the support and the failure rate function ofX, respectively. These extend the results of Ruiz and Navarro (1994) and Ghitany et al. (1995). Next we investigate necessary and sufficient conditions such thath(y)=E(g(X)|X≥y), for a given functionh. Support for this research was provided in part by the National Science Council of the Republic of China, Grant No. NSC 86-2115-M-110-014 and NSC 88-2118-M-110-001  相似文献   

16.
This paper is devoted to the problem of estimating the square of population mean (μ2) in normal distribution when a prior estimate or guessed value σ0 2 of the population variance σ2 is available. We have suggested a family of shrinkage estimators , say, for μ2 with its mean squared error formula. A condition is obtained in which the suggested estimator is more efficient than Srivastava et al’s (1980) estimator Tmin. Numerical illustrations have been carried out to demonstrate the merits of the constructed estimator over Tmin. It is observed that some of these estimators offer improvements over Tmin particularly when the population is heterogeneous and σ2 is in the vicinity of σ0 2.  相似文献   

17.
《随机性模型》2013,29(1):139-157
We consider the one-sided and the two-sided first-exit problem for a compound Poisson process with linear deterministic decrease between positive and negative jumps. This process (X(t)) t≥0 occurs as the workload process of a single-server queueing system with random workload removal, which we denote by M/G u /G d /1, where G u (G d ) stands for the distribution of the upward (downward) jumps; other applications are to cash management, dams, and several related fields. Under various conditions on G u and G d (assuming e.g. that one of them is hyperexponential, Erlang or Coxian), we derive the joint distribution of τ y =inf{t≥0|X(t)?(0,y)}, y>0, and X(τ y ) as well as that of T=inf{t≥0|X(t)≤0} and X(T). We also determine the distribution of sup{X(t)|0≤tT}.  相似文献   

18.
19.
In this paper, we propose two SUR type estimators based on combining the SUR ridge regression and the restricted least squares methods. In the sequel these estimators are designated as the restricted ridge Liu estimator and the restricted ridge HK estimator (see Liu in Commun Statist Thoery Methods 22(2):393–402, 1993; Sarkar in Commun Statist A 21:1987–2000, 1992). The study has been made using Monte Carlo techniques, (1,000 replications), under certain conditions where a number of factors that may effect their performance have been varied. The performance of the proposed and some of the existing estimators are evaluated by means of the TMSE and the PR criteria. Our results indicate that the proposed SUR restricted ridge estimators based on K SUR, K Sratio, K Mratio and [(K)\ddot]{\ddot{K}} produced smaller TMSE and/or PR values than the remaining estimators. In contrast with other ridge estimators, components of [(K)\ddot]{\ddot{K}} are defined in terms of the eigenvalues of X* X*{X^{{\ast^{\prime}}} X^{\rm \ast}} and all lie in the open interval (0, 1).  相似文献   

20.
We consider two consistent estimators for the parameters of the linear predictor in the Poisson regression model, where the covariate is measured with errors. The measurement errors are assumed to be normally distributed with known error variance σ u 2 . The SQS estimator, based on a conditional mean-variance model, takes the distribution of the latent covariate into account, and this is here assumed to be a normal distribution. The CS estimator, based on a corrected score function, does not use the distribution of the latent covariate. Nevertheless, for small σ u 2 , both estimators have identical asymptotic covariance matrices up to the order of σ u 2 . We also compare the consistent estimators to the naive estimator, which is based on replacing the latent covariate with its (erroneously) measured counterpart. The naive estimator is biased, but has a smaller covariance matrix than the consistent estimators (at least up to the order of σ u 2 ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号