首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The author considers estimation under a Gamma process model for degradation data. The setting for degradation data is one in which n independent units, each with a Gamma process with a common shape function and scale parameter, are observed at several possibly different times. Covariates can be incorporated into the model by taking the scale parameter as a function of the covariates. The author proposes using the maximum pseudo‐likelihood method to estimate the unknown parameters. The method requires usage of the Pool Adjacent Violators Algorithm. Asymptotic properties, including consistency, convergence rate and asymptotic distribution, are established. Simulation studies are conducted to validate the method and its application is illustrated by using bridge beams data and carbon‐film resistors data. The Canadian Journal of Statistics 37: 102‐118; 2009 © 2009 Statistical Society of Canada  相似文献   

3.
The independent additive errors linear model consists of a structure for the mean and a separate structure for the error distribution. The error structure may be parametric or it may be semiparametric. Under alternative values of the mean structure, the best fitting additive errors model has an error distribution which can be represented as the convolution of the actual error distribution and the marginal distribution of a misspecification term. The model misspecification term results from the covariates' distribution. Conditions are developed to distinguish when the semiparametric model yields sharper inference than the parametric model and vice versa. The main conditions concern the actual error distribution and the covariates' distribution. The theoretical results explain a paradoxical finding in semiparametric Bayesian modelling, where the posterior distribution under a semiparametric model is found to be more concentrated than is the posterior distribution under a corresponding parametric model. The paradox is illustrated on a set of allometric data. The Canadian Journal of Statistics 39: 165–180; 2011 ©2011 Statistical Society of Canada  相似文献   

4.
The nonparametric Bayesian approach for inference regarding the unknown distribution of a random sample customarily assumes that this distribution is random and arises through Dirichlet-process mixing. Previous work within this setting has focused on the mean of the posterior distribution of this random distribution, which is the predictive distribution of a future observation given the sample. Our interest here is in learning about other features of this posterior distribution as well as about posteriors associated with functionals of the distribution of the data. We indicate how to do this in the case of linear functionals. An illustration, with a sample from a Gamma distribution, utilizes Dirichlet-process mixtures of normals to recover this distribution and its features.  相似文献   

5.
6.
7.
8.
The accuracy of a diagnostic test is typically characterized using the receiver operating characteristic (ROC) curve. Summarizing indexes such as the area under the ROC curve (AUC) are used to compare different tests as well as to measure the difference between two populations. Often additional information is available on some of the covariates which are known to influence the accuracy of such measures. The authors propose nonparametric methods for covariate adjustment of the AUC. Models with normal errors and possibly non‐normal errors are discussed and analyzed separately. Nonparametric regression is used for estimating mean and variance functions in both scenarios. In the model that relaxes the assumption of normality, the authors propose a covariate‐adjusted Mann–Whitney estimator for AUC estimation which effectively uses available data to construct working samples at any covariate value of interest and is computationally efficient for implementation. This provides a generalization of the Mann–Whitney approach for comparing two populations by taking covariate effects into account. The authors derive asymptotic properties for the AUC estimators in both settings, including asymptotic normality, optimal strong uniform convergence rates and mean squared error (MSE) consistency. The MSE of the AUC estimators was also assessed in smaller samples by simulation. Data from an agricultural study were used to illustrate the methods of analysis. The Canadian Journal of Statistics 38:27–46; 2010 © 2009 Statistical Society of Canada  相似文献   

9.
In this article, we develop regression models with cross‐classified responses. Conditional independence structures can be explored/exploited through the selective inclusion/exclusion of terms in a certain functional ANOVA decomposition, and the estimation is done nonparametrically via the penalized likelihood method. A cohort of computational and data analytical tools are presented, which include cross‐validation for smoothing parameter selection, Kullback–Leibler projection for model selection, and Bayesian confidence intervals for odds ratios. Random effects are introduced to model possible correlations such as those found in longitudinal and clustered data. Empirical performances of the methods are explored in simulation studies of limited scales, and a real data example is presented using some eyetracking data from linguistic studies. The techniques are implemented in a suite of R functions, whose usage is briefly described in the appendix. The Canadian Journal of Statistics 39: 591–609; 2011. © 2011 Statistical Society of Canada  相似文献   

10.
11.
The class $G^{\rho,\lambda }$ of weighted log‐rank tests proposed by Fleming & Harrington [Fleming & Harrington (1991) Counting Processes and Survival Analysis, Wiley, New York] has been widely used in survival analysis and is nowadays, unquestionably, the established method to compare, nonparametrically, k different survival functions based on right‐censored survival data. This paper extends the $G^{\rho,\lambda }$ class to interval‐censored data. First we introduce a new general class of rank based tests, then we show the analogy to the above proposal of Fleming & Harrington. The asymptotic behaviour of the proposed tests is derived using an observed Fisher information approach and a permutation approach. Aiming to make this family of tests interpretable and useful for practitioners, we explain how to interpret different choices of weights and we apply it to data from a cohort of intravenous drug users at risk for HIV infection. The Canadian Journal of Statistics 40: 501–516; 2012 © 2012 Statistical Society of Canada  相似文献   

12.
13.
We propose an efficient and robust method for variance function estimation in semiparametric longitudinal data analysis. The method utilizes a local log‐linear approximation for the variance function and adopts a generalized estimating equation approach to account for within subject correlations. We show theoretically and empirically that our method outperforms estimators using working independence that ignores the correlations. The Canadian Journal of Statistics 39: 656–670; 2011. © 2011 Statistical Society of Canada  相似文献   

14.
15.
Many methods have been developed for the nonparametric estimation of a mean response function, but most of these methods do not lend themselves to simultaneous estimation of the mean response function and its derivatives. Recovering derivatives is important for analyzing human growth data, studying physical systems described by differential equations, and characterizing nanoparticles from scattering data. In this article the authors propose a new compound estimator that synthesizes information from numerous pointwise estimators indexed by a discrete set. Unlike spline and kernel smooths, the compound estimator is infinitely differentiable; unlike local regression smooths, the compound estimator is self‐consistent in that its derivatives estimate the derivatives of the mean response function. The authors show that the compound estimator and its derivatives can attain essentially optimal convergence rates in consistency. The authors also provide a filtration and extrapolation enhancement for finite samples, and the authors assess the empirical performance of the compound estimator and its derivatives via a simulation study and an application to real data. The Canadian Journal of Statistics 39: 280–299; 2011 © 2011 Statistical Society of Canada  相似文献   

16.
17.
The authors develop default priors for the Gaussian random field model that includes a nugget parameter accounting for the effects of microscale variations and measurement errors. They present the independence Jeffreys prior, the Jeffreys‐rule prior and a reference prior and study posterior propriety of these and related priors. They show that the uniform prior for the correlation parameters yields an improper posterior. In case of known regression and variance parameters, they derive the Jeffreys prior for the correlation parameters. They prove posterior propriety and obtain that the predictive distributions at ungauged locations have finite variance. Moreover, they show that the proposed priors have good frequentist properties, except for those based on the marginal Jeffreys‐rule prior for the correlation parameters, and illustrate their approach by analyzing a dataset of zinc concentrations along the river Meuse. The Canadian Journal of Statistics 40: 304–327; 2012 © 2012 Statistical Society of Canada  相似文献   

18.
19.
Matched case–control designs are commonly used in epidemiological studies for estimating the effect of exposure variables on the risk of a disease by controlling the effect of confounding variables. Due to retrospective nature of the study, information on a covariate could be missing for some subjects. A straightforward application of the conditional logistic likelihood for analyzing matched case–control data with the partially missing covariate may yield inefficient estimators of the parameters. A robust method has been proposed to handle this problem using an estimated conditional score approach when the missingness mechanism does not depend on the disease status. Within the conditional logistic likelihood framework, an empirical procedure is used to estimate the odds of the disease for the subjects with missing covariate values. The asymptotic distribution and the asymptotic variance of the estimator when the matching variables and the completely observed covariates are categorical. The finite sample performance of the proposed estimator is assessed through a simulation study. Finally, the proposed method has been applied to analyze two matched case–control studies. The Canadian Journal of Statistics 38: 680–697; 2010 © 2010 Statistical Society of Canada  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号