首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We propose a new type of multivariate statistical model that permits non‐Gaussian distributions as well as the inclusion of conditional independence assumptions specified by a directed acyclic graph. These models feature a specific factorisation of the likelihood that is based on pair‐copula constructions and hence involves only univariate distributions and bivariate copulas, of which some may be conditional. We demonstrate maximum‐likelihood estimation of the parameters of such models and compare them to various competing models from the literature. A simulation study investigates the effects of model misspecification and highlights the need for non‐Gaussian conditional independence models. The proposed methods are finally applied to modeling financial return data. The Canadian Journal of Statistics 40: 86–109; 2012 © 2012 Statistical Society of Canada  相似文献   

3.
Positive quadrant dependence is a specific dependence structure that is of practical importance in for example modelling dependencies in insurance and actuarial sciences. This dependence structure imposes a constraint on the copula function. The interest in this paper is to test for positive quadrant dependence. One way to assess the distribution of the test statistics under the null hypothesis of positive quadrant dependence is to resample from a constrained copula. This requires constrained estimation of a copula function. We show that this use of resampling under a constrained copula improves considerably the power performance of existing testing procedures. We propose two resampling procedures, one based on a parametric constrained copula estimation and one relying on nonparametric estimation of a positive quadrant dependence copula, and discuss their properties. The finite‐sample performances of the resulting testing procedures are evaluated via a simulation study that also includes comparisons with existing tests. Finally, a data set of Danish fire insurance claims is tested for positive quadrant dependence. The Canadian Journal of Statistics 41: 36–64; 2013 © 2012 Statistical Society of Canada  相似文献   

4.
5.
6.
7.
8.
9.
10.
In recent years analyses of dependence structures using copulas have become more popular than the standard correlation analysis. Starting from Aas et al. ( 2009 ) regular vine pair‐copula constructions (PCCs) are considered the most flexible class of multivariate copulas. PCCs are involved objects but (conditional) independence present in data can simplify and reduce them significantly. In this paper the authors detect (conditional) independence in a particular vine PCC model based on bivariate t copulas by deriving and implementing a reversible jump Markov chain Monte Carlo algorithm. However, the methodology is general and can be extended to any regular vine PCC and to all known bivariate copula families. The proposed approach considers model selection and estimation problems for PCCs simultaneously. The effectiveness of the developed algorithm is shown in simulations and its usefulness is illustrated in two real data applications. The Canadian Journal of Statistics 39: 239–258; 2011 © 2011 Statistical Society of Canada  相似文献   

11.
12.
13.
Statistical procedures for the detection of a change in the dependence structure of a series of multivariate observations are studied in this work. The test statistics that are proposed are $L_1$ , $L_2$ , and $L_{\infty }$ distances computed from vectors of differences of Kendall's tau; two multivariate extensions of Kendall's measure of association are used. Since the distributions of these statistics under the null hypothesis of no change depend on the unknown underlying copula of the vectors, a procedure based on the multiplier central limit theorem is used for the computation of p‐values; the method is shown to be valid both asymptotically and for moderate sample sizes. Alternative versions of the tests that take into account possible breakpoints in the marginal distributions are also investigated. Monte Carlo simulations show that the tests are powerful under many scenarios of change‐point. In addition, two estimators of the time of change are proposed and their efficiency is carefully studied. The methodologies are illustrated on simulated series from the Canadian Regional Climate Model. The Canadian Journal of Statistics 41: 65–82; 2013 © 2012 Statistical Society of Canada  相似文献   

14.
15.
A precision matrix is an important parameter of interests because its elements describe useful association information among multiple variables, which has a wide variety of applications. For example, it is used for inferring gene regulation networks in genomic studies and stock association networks in financial studies. However, in many cases, the precision matrix needs to be robustly estimated due to the presence of outliers. We propose estimating a sparse scaled precision matrix via weighted median regression with regularization. Our weighted median regression approach is consistent under various distributional assumptions including multivariate t‐ or contaminated Gaussian distributions. This fact is illustrated with simulation studies and a real data analysis with monthly stock return data. The Canadian Journal of Statistics 46: 265–278; 2018 © 2018 Statistical Society of Canada  相似文献   

16.
This paper investigates statistical issues that arise in interlaboratory studies known as Key Comparisons when one has to link several comparisons to or through existing studies. An approach to the analysis of such a data is proposed using Gaussian distributions with heterogeneous variances. We develop conditions for the set of sufficient statistics to be complete and for the uniqueness of uniformly minimum variance unbiased estimators (UMVUE) of the contrast parametric functions. New procedures are derived for estimating these functions with estimates of their uncertainty. These estimates lead to associated confidence intervals for the laboratories (or studies) contrasts. Several examples demonstrate statistical inference for contrasts based on linkage through the pilot laboratories. Monte Carlo simulation results on performance of approximate confidence intervals are also reported.  相似文献   

17.
18.
It is known that the profile empirical likelihood method based on estimating equations is computationally intensive when the number of nuisance parameters is large. Recently, Li, Peng, & Qi (2011) proposed a jackknife empirical likelihood method for constructing confidence regions for the parameters of interest by estimating the nuisance parameters separately. However, when the estimators for the nuisance parameters have no explicit formula, the computation of the jackknife empirical likelihood method is still intensive. In this paper, an approximate jackknife empirical likelihood method is proposed to reduce the computation in the jackknife empirical likelihood method when the nuisance parameters cannot be estimated explicitly. A simulation study confirms the advantage of the new method. The Canadian Journal of Statistics 40: 110–123; 2012 © 2012 Statistical Society of Canada  相似文献   

19.
Coarse data is a general type of incomplete data that includes grouped data, censored data, and missing data. The likelihood‐based estimation approach with coarse data is challenging because the likelihood function is in integral form. The Monte Carlo EM algorithm of Wei & Tanner [Wei & Tanner (1990). Journal of the American Statistical Association, 85, 699–704] is adapted to compute the maximum likelihood estimator in the presence of coarse data. Stochastic coarse data is also covered and the computation can be implemented using the parametric fractional imputation method proposed by Kim [Kim (2011). Biometrika, 98, 119–132]. Results from a limited simulation study are presented. The proposed method is also applied to the Korean Longitudinal Study of Aging (KLoSA). The Canadian Journal of Statistics 40: 604–618; 2012 © 2012 Statistical Society of Canada  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号