首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We use the two‐state Markov regime‐switching model to explain the behaviour of the WTI crude‐oil spot prices from January 1986 to February 2012. We investigated the use of methods based on the composite likelihood and the full likelihood. We found that the composite‐likelihood approach can better capture the general structural changes in world oil prices. The two‐state Markov regime‐switching model based on the composite‐likelihood approach closely depicts the cycles of the two postulated states: fall and rise. These two states persist for on average 8 and 15 months, which matches the observed cycles during the period. According to the fitted model, drops in oil prices are more volatile than rises. We believe that this information can be useful for financial officers working in related areas. The model based on the full‐likelihood approach was less satisfactory. We attribute its failure to the fact that the two‐state Markov regime‐switching model is too rigid and overly simplistic. In comparison, the composite likelihood requires only that the model correctly specifies the joint distribution of two adjacent price changes. Thus, model violations in other areas do not invalidate the results. The Canadian Journal of Statistics 41: 353–367; 2013 © 2013 Statistical Society of Canada  相似文献   

2.
3.
The authors derive closed‐form expressions for the full, profile, conditional and modified profile likelihood functions for a class of random growth parameter models they develop as well as Garcia's additive model. These expressions facilitate the determination of parameter estimates for both types of models. The profile, conditional and modified profile likelihood functions are maximized over few parameters to yield a complete set of parameter estimates. In the development of their random growth parameter models the authors specify the drift and diffusion coefficients of the growth parameter process in a natural way which gives interpretive meaning to these coefficients while yielding highly tractable models. They fit several of their random growth parameter models and Garcia's additive model to stock market data, and discuss the results. The Canadian Journal of Statistics 38: 474–487; 2010 © 2010 Statistical Society of Canada  相似文献   

4.
5.
6.
FRANZ Konecny 《Statistics》2013,47(1):113-118
In this paper we are concerned with a class of simple point processes, whose unobservable stochastic intensity is a shot-noise process. We derive a stochastic equation for the conditional moment generating function of the intensity, which can be solved in a recursive way. This yields explicit expression for the minimum variance estimate of the intensity as well as the likelihood ration with respect to the reference measure, on the basis of point process observations.  相似文献   

7.
In this paper, we consider a regression analysis for a missing data problem in which the variables of primary interest are unobserved under a general biased sampling scheme, an outcome‐dependent sampling (ODS) design. We propose a semiparametric empirical likelihood method for accessing the association between a continuous outcome response and unobservable interesting factors. Simulation study results show that ODS design can produce more efficient estimators than the simple random design of the same sample size. We demonstrate the proposed approach with a data set from an environmental study for the genetic effects on human lung function in COPD smokers. The Canadian Journal of Statistics 40: 282–303; 2012 © 2012 Statistical Society of Canada  相似文献   

8.
9.
10.
Coarse data is a general type of incomplete data that includes grouped data, censored data, and missing data. The likelihood‐based estimation approach with coarse data is challenging because the likelihood function is in integral form. The Monte Carlo EM algorithm of Wei & Tanner [Wei & Tanner (1990). Journal of the American Statistical Association, 85, 699–704] is adapted to compute the maximum likelihood estimator in the presence of coarse data. Stochastic coarse data is also covered and the computation can be implemented using the parametric fractional imputation method proposed by Kim [Kim (2011). Biometrika, 98, 119–132]. Results from a limited simulation study are presented. The proposed method is also applied to the Korean Longitudinal Study of Aging (KLoSA). The Canadian Journal of Statistics 40: 604–618; 2012 © 2012 Statistical Society of Canada  相似文献   

11.
12.
13.
14.
15.
16.
A computational problem in many fields is to estimate simultaneously multiple integrals and expectations, assuming that the data are generated by some Monte Carlo algorithm. Consider two scenarios in which draws are simulated from multiple distributions but the normalizing constants of those distributions may be known or unknown. For each scenario, existing estimators can be classified as using individual samples separately or using all the samples jointly. The latter pooled‐sample estimators are statistically more efficient but computationally more costly to evaluate than the separate‐sample estimators. We develop a cluster‐sample approach to obtain computationally effective estimators, after draws are generated for each scenario. We divide all the samples into mutually exclusive clusters and combine samples from each cluster separately. Furthermore, we exploit a relationship between estimators based on samples from different clusters to achieve variance reduction. The resulting estimators, compared with the pooled‐sample estimators, typically yield similar statistical efficiency but have reduced computational cost. We illustrate the value of the new approach by two examples for an Ising model and a censored Gaussian random field. The Canadian Journal of Statistics 41: 151–173; 2013 © 2012 Statistical Society of Canada  相似文献   

17.
18.
As the treatments of cancer progress, a certain number of cancers are curable if diagnosed early. In population‐based cancer survival studies, cure is said to occur when mortality rate of the cancer patients returns to the same level as that expected for the general cancer‐free population. The estimates of cure fraction are of interest to both cancer patients and health policy makers. Mixture cure models have been widely used because the model is easy to interpret by separating the patients into two distinct groups. Usually parametric models are assumed for the latent distribution for the uncured patients. The estimation of cure fraction from the mixture cure model may be sensitive to misspecification of latent distribution. We propose a Bayesian approach to mixture cure model for population‐based cancer survival data, which can be extended to county‐level cancer survival data. Instead of modeling the latent distribution by a fixed parametric distribution, we use a finite mixture of the union of the lognormal, loglogistic, and Weibull distributions. The parameters are estimated using the Markov chain Monte Carlo method. Simulation study shows that the Bayesian method using a finite mixture latent distribution provides robust inference of parameter estimates. The proposed Bayesian method is applied to relative survival data for colon cancer patients from the Surveillance, Epidemiology, and End Results (SEER) Program to estimate the cure fractions. The Canadian Journal of Statistics 40: 40–54; 2012 © 2012 Statistical Society of Canada  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号