首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. Least squares methods are popular for fitting valid variogram models to spatial data. The paper proposes a new least squares method based on spatial subsampling for variogram model fitting. We show that the method proposed is statistically efficient among a class of least squares methods, including the generalized least squares method. Further, it is computationally much simpler than the generalized least squares method. The method produces valid variogram estimators under very mild regularity conditions on the underlying random field and may be applied with different choices of the generic variogram estimator without analytical calculation. An extension of the method proposed to a class of spatial regression models is illustrated with a real data example. Results from a simulation study on finite sample properties of the method are also reported.  相似文献   

2.
A critical step for geostatistical prediction is estimation of variogram from the data. One of the popular methods estimating variogram is a smoothed version of classical nonparametric variogram estimator. In this paper we investigate its theoretical and empirical properties to provide useful information for using it. The main results are based on asymptotic theories (i.e., risk and central limit theorem) under nearly infill domain sampling. Simulation is also employed to make our points.  相似文献   

3.
The mark variogram [Cressie, 1993. Statistics for Spatial Data. Wiley, New York] is a useful tool to analyze data from marked point processes. In this paper, we investigate the asymptotic properties of its estimator. Our main findings are that the sample mark variogram is a consistent estimator for the true mark variogram and is asymptotically normal under some mild conditions. These results hold for both the geostatistical marking case (i.e., the case where the marks and points are independent) and the non-geostatistical marking case (i.e., the case where the marks and points are dependent). As an application we develop a general test for spatial isotropy and study our methodology through a simulation study and an application to a data set on long leaf pine trees.  相似文献   

4.
We estimate model parameters of Lévy‐driven causal continuous‐time autoregressive moving average random fields by fitting the empirical variogram to the theoretical counterpart using a weighted least squares (WLS) approach. Subsequent to deriving asymptotic results for the variogram estimator, we show strong consistency and asymptotic normality of the parameter estimator. Furthermore, we conduct a simulation study to assess the quality of the WLS estimator for finite samples. For the simulation, we utilize numerical approximation schemes based on truncation and discretization of stochastic integrals and we analyze the associated simulation errors in detail. Finally, we apply our results to real data of the cosmic microwave background.  相似文献   

5.
One of the main problems in geostatistics is fitting a valid variogram or covariogram model in order to describe the underlying dependence structure in the data. The dependence between observations can be also modeled in the spectral domain, but the traditional methods based on the periodogram as an estimator of the spectral density may present some problems for the spatial case. In this work, we propose an estimation method for the covariogram parameters based on the fast Fourier transform (FFT) of biased covariances. The performance of this estimator for finite samples is compared through a simulation study with other classical methods stated in spatial domain, such as weighted least squares and maximum likelihood, as well as with other spectral estimators. Additionally, an example of application to real data is given.  相似文献   

6.
The standard approach to non-parametric bivariate density estimation is to use a kernel density estimator. Practical performance of this estimator is hindered by the fact that the estimator is not adaptive (in the sense that the level of smoothing is not sensitive to local properties of the density). In this paper a simple, automatic and adaptive bivariate density estimator is proposed based on the estimation of marginal and conditional densities. Asymptotic properties of the estimator are examined, and guidance to practical application of the method is given. Application to two examples illustrates the usefulness of the estimator as an exploratory tool, particularly in situations where the local behaviour of the density varies widely. The proposed estimator is also appropriate for use as a pilot estimate for an adaptive kernel estimate, since it is relatively inexpensive to calculate.  相似文献   

7.
We apply the stochastic approximation method to construct a large class of recursive kernel estimators of a probability density, including the one introduced by Hall and Patil [1994. On the efficiency of on-line density estimators. IEEE Trans. Inform. Theory 40, 1504–1512]. We study the properties of these estimators and compare them with Rosenblatt's nonrecursive estimator. It turns out that, for pointwise estimation, it is preferable to use the nonrecursive Rosenblatt's kernel estimator rather than any recursive estimator. A contrario, for estimation by confidence intervals, it is better to use a recursive estimator rather than Rosenblatt's estimator.  相似文献   

8.
The likelihood function is often used for parameter estimation. Its use, however, may cause difficulties in specific situations. In order to circumvent these difficulties, we propose a parameter estimation method based on the replacement of the likelihood in the formula of the Bayesian posterior distribution by a function which depends on a contrast measuring the discrepancy between observed data and a parametric model. The properties of the contrast-based (CB) posterior distribution are studied to understand what the consequences of incorporating a contrast in the Bayes formula are. We show that the CB-posterior distribution can be used to make frequentist inference and to assess the asymptotic variance matrix of the estimator with limited analytical calculations compared to the classical contrast approach. Even if the primary focus of this paper is on frequentist estimation, it is shown that for specific contrasts the CB-posterior distribution can be used to make inference in the Bayesian way.The method was used to estimate the parameters of a variogram (simulated data), a Markovian model (simulated data) and a cylinder-based autosimilar model describing soil roughness (real data). Even if the method is presented in the spatial statistics perspective, it can be applied to non-spatial data.  相似文献   

9.
In this paper, we study the robustness properties of several procedures for the joint estimation of shape and scale in a generalized Pareto model. The estimators that we primarily focus upon, most bias robust estimator (MBRE) and optimal MSE-robust estimator (OMSE), are one-step estimators distinguished as optimally robust in the shrinking neighbourhood setting; that is, they minimize the maximal bias, respectively, on such a specific neighbourhood, the maximal mean squared error (MSE). For their initialization, we propose a particular location–dispersion estimator, MedkMAD, which matches the population median and kMAD (an asymmetric variant of the median of absolute deviations) against the empirical counterparts. These optimally robust estimators are compared to the maximum-likelihood, skipped maximum-likelihood, Cramér–von-Mises minimum distance, method-of-medians, and Pickands estimators. To quantify their deviation from robust optimality, for each of these suboptimal estimators, we determine the finite-sample breakdown point and the influence function, as well as the statistical accuracy measured by asymptotic bias, variance, and MSE – all evaluated uniformly on shrinking neighbourhoods. These asymptotic findings are complemented by an extensive simulation study to assess the finite-sample behaviour of the considered procedures. The applicability of the procedures and their stability against outliers are illustrated for the Danish fire insurance data set from the package evir.  相似文献   

10.
In this paper we propose a modified Newton-Raphson method to obtain super efficient estimators of the frequencies of a sinusoidal signal in presence of stationary noise. It is observed that if we start from an initial estimator with convergence rate Op(n−1) and use Newton-Raphson algorithm with proper step factor modification, then it produces super efficient frequency estimator in the sense that its asymptotic variance is lower than the asymptotic variance of the corresponding least squares estimator. The proposed frequency estimator is consistent and it has the same rate of convergence, namely Op(n−3/2), as the least squares estimator. Monte Carlo simulations are performed to observe the performance of the proposed estimator for different sample sizes and for different models. The results are quite satisfactory. One real data set has been analyzed for illustrative purpose.  相似文献   

11.
A modified double stage shrinkage estimator has been proposed for the single parameter θ of a distribution function . It is shown to be locally better in comparison to the usual double stage shrinkage estimator in the sense of smaller mean squared error in a certain neighbourhood of prior estimate θo of θ.  相似文献   

12.
Abstract

A nonparametric procedure is proposed to estimate multiple change-points of location changes in a univariate data sequence by using ranks instead of the raw data. While existing rank-based multiple change-point detection methods are mostly based on sequential tests, we treat it as a model selection problem. We derive the corresponding Schwarz’s information criterion for rank-statistics, theoretically prove the consistency of the change-point estimator and use a pruned dynamic programing algorithm to achieve the change-point estimator. Simulation studies show our method’s robustness, effectiveness and efficiency in detecting mean-changes. We also apply the method to a gene dataset as an illustration.  相似文献   

13.
René Michel 《Statistics》2013,47(2):187-202
We investigate a method to estimate the angular density non-parametrically in bivariate generalized Pareto models. The angular density can be used as a visual tool to gain a first insight into the tail-dependence structure of given data. We derive a representation of the angular density by means of the Pickands density and use it to construct our estimator. The estimator is asymptotically normal under certain regularity conditions. We also test it with simulated data and give an application to a real hydrological data set. Finally, we show that our estimator cannot be transferred directly to higher dimensions.  相似文献   

14.
In this article, we extend a semiparametric regression estimator with multiplicative adjustment to time series context. The asymptotic theory and results from a simulation study are discussed. Theoretical results and numerical comparison show that, in the time series case, the semiparametric estimator is better than the traditional local polynomial estimator in a wide neighbourhood around the true regression function.  相似文献   

15.
In the location-scale estimation problem, we study robustness properties of M-estimators of the scale parameter under unknown ?-contamination of a fixed symmetric unimodal error distribution F0. Within a general class of M-estimators, the estimator with minimax asymptotic bias is shown to lie within the subclass of α-interquantile ranges of the empirical distribution symmetrized about the sample median. Our main result is that as ? → 0, the limiting minimax asymptotic bias estimator is sometimes (e.g., when Fo is Cauchy), but not always, the median absolute deviation about the median. It is also shown that contamination in the neighbourhood of a discontinuity of the influence function of a minimax bias estimator can sometimes inflate the asymptotic variance beyond that achieved by placing all the ?-contamination at infinity. This effect is quantified by a new notion of asymptotic efficiency that takes into account the effect of infinitesimal contamination of the parametric model for the error distribution.  相似文献   

16.
In randomized clinical trials, a treatment effect on a time-to-event endpoint is often estimated by the Cox proportional hazards model. The maximum partial likelihood estimator does not make sense if the proportional hazard assumption is violated. Xu and O'Quigley (Biostatistics 1:423-439, 2000) proposed an estimating equation, which provides an interpretable estimator for the treatment effect under model misspecification. Namely it provides a consistent estimator for the log-hazard ratio among the treatment groups if the model is correctly specified, and it is interpreted as an average log-hazard ratio over time even if misspecified. However, the method requires the assumption that censoring is independent of treatment group, which is more restricted than that for the maximum partial likelihood estimator and is often violated in practice. In this paper, we propose an alternative estimating equation. Our method provides an estimator of the same property as that of Xu and O'Quigley under the usual assumption for the maximum partial likelihood estimation. We show that our estimator is consistent and asymptotically normal, and derive a consistent estimator of the asymptotic variance. If the proportional hazards assumption holds, the efficiency of the estimator can be improved by applying the covariate adjustment method based on the semiparametric theory proposed by Lu and Tsiatis (Biometrika 95:679-694, 2008).  相似文献   

17.
Dimensionality reduction is one of the important preprocessing steps in high-dimensional data analysis. In this paper we propose a supervised manifold learning method, it makes use of the information of continuous dependent variables to distinguish intrinsic neighbourhood and extrinsic neighbourhood of data samples, and construct two graphs according to these two kinds of neighbourhoods. Following the idea of Laplacian eigenmaps, we reveal that on the low-dimensional manifold the neighbourhood structure can be preserved or even improved. Our approach has two important characteristics: (i) it uses dependent variables to find an informative low-dimensional projection which is robust to noisy independent variables and (ii) the objective function simultaneously enlarges the distance between dissimilar samples and pushes similar samples close to each other according to the graph constructed with the help of continuous dependent variables. Our experiments demonstrate that the effectiveness of our method is over their traditional rivals.  相似文献   

18.
We consider the problem of estimating the parameters of the covariance function of a stationary spatial random process. In spatial statistics, there are widely used parametric forms for the covariance functions, and various methods for estimating the parameters have been proposed in the literature. We develop a method for estimating the parameters of the covariance function that is based on a regression approach. Our method utilizes pairs of observations whose distances are closest to a value h>0h>0 which is chosen in a way that the estimated correlation at distance h is a predetermined value. We demonstrate the effectiveness of our procedure by simulation studies and an application to a water pH data set. Simulation studies show that our method outperforms all well-known least squares-based approaches to the variogram estimation and is comparable to the maximum likelihood estimation of the parameters of the covariance function. We also show that under a mixing condition on the random field, the proposed estimator is consistent for standard one parameter models for stationary correlation functions.  相似文献   

19.
We consider minimax-bias M-estimation of a location parameter in a Kolmogorov neighbourhood K() of a normal distribution. The maximum asymptotic bias of M-estimators for the Kolmogorov normal neighbourhood is derived, and its relation with the gross-error sensitivity of the estimator at the nominal model (the Gaussian case) is found. In addition, efficient bias-robust M-estimators Ti are constructed. Numerical results are also obtained to show the percentage of increase in maximum asymptotic bias and the efficiency we can achieve for some well-known -functions.  相似文献   

20.
ABSTRACT

In this article we reconsider an estimator of population size previously advocated for use when sampling from a population subdivided into different types. We show that it may be usefully adopted in the simple equal-catchability model used in mark-recapture. Unlike the commonly used maximum likelihood estimator, this conditionally unbiased estimator is always finite-valued. Except in situations in which the data contain little relevant information, its performance, in terms of bias and precision, is seen to be at least as good as that of the maximum likelihood estimator. Two estimators of the standard deviation of the conditionally unbiased estimator are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号