首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Theoretical models of contagion and spillovers allow for asset-specific shocks that can be directly transmitted from one asset to another, as well as indirectly transmitted across uncorrelated assets through some intermediary mechanism. Standard multivariate Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models, however, provide estimates of volatilities and correlations based only on the direct transmission of shocks across assets. As such, spillover effects via an intermediary asset or market are not considered. In this article, a multivariate GARCH model is constructed that provides estimates of volatilities and correlations based on both directly and indirectly transmitted shocks. The model is applied to exchange rate and equity returns data. The results suggest that if a spillover component is observed in the data, the spillover augmented models provide significantly different volatility estimates compared to standard multivariate GARCH models.  相似文献   

2.
This article proposes a dynamic framework for modeling and forecasting of realized covariance matrices using vine copulas to allow for more flexible dependencies between assets. Our model automatically guarantees positive definiteness of the forecast through the use of a Cholesky decomposition of the realized covariance matrix. We explicitly account for long-memory behavior by using fractionally integrated autoregressive moving average (ARFIMA) and heterogeneous autoregressive (HAR) models for the individual elements of the decomposition. Furthermore, our model incorporates non-Gaussian innovations and GARCH effects, accounting for volatility clustering and unconditional kurtosis. The dependence structure between assets is studied using vine copula constructions, which allow for nonlinearity and asymmetry without suffering from an inflexible tail behavior or symmetry restrictions as in conventional multivariate models. Further, the copulas have a direct impact on the point forecasts of the realized covariances matrices, due to being computed as a nonlinear transformation of the forecasts for the Cholesky matrix. Beside studying in-sample properties, we assess the usefulness of our method in a one-day-ahead forecasting framework, comparing recent types of models for the realized covariance matrix based on a model confidence set approach. Additionally, we find that in Value-at-Risk (VaR) forecasting, vine models require less capital requirements due to smoother and more accurate forecasts.  相似文献   

3.
Abstract

Although stochastic volatility and GARCH (generalized autoregressive conditional heteroscedasticity) models have successfully described the volatility dynamics of univariate asset returns, extending them to the multivariate models with dynamic correlations has been difficult due to several major problems. First, there are too many parameters to estimate if available data are only daily returns, which results in unstable estimates. One solution to this problem is to incorporate additional observations based on intraday asset returns, such as realized covariances. Second, since multivariate asset returns are not synchronously traded, we have to use the largest time intervals such that all asset returns are observed to compute the realized covariance matrices. However, in this study, we fail to make full use of the available intraday informations when there are less frequently traded assets. Third, it is not straightforward to guarantee that the estimated (and the realized) covariance matrices are positive definite.

Our contributions are the following: (1) we obtain the stable parameter estimates for the dynamic correlation models using the realized measures, (2) we make full use of intraday informations by using pairwise realized correlations, (3) the covariance matrices are guaranteed to be positive definite, (4) we avoid the arbitrariness of the ordering of asset returns, (5) we propose the flexible correlation structure model (e.g., such as setting some correlations to be zero if necessary), and (6) the parsimonious specification for the leverage effect is proposed. Our proposed models are applied to the daily returns of nine U.S. stocks with their realized volatilities and pairwise realized correlations and are shown to outperform the existing models with respect to portfolio performances.  相似文献   

4.
The continuous extension of a discrete random variable is amongst the computational methods used for estimation of multivariate normal copula-based models with discrete margins. Its advantage is that the likelihood can be derived conveniently under the theory for copula models with continuous margins, but there has not been a clear analysis of the adequacy of this method. We investigate the asymptotic and small-sample efficiency of two variants of the method for estimating the multivariate normal copula with univariate binary, Poisson, and negative binomial regressions, and show that they lead to biased estimates for the latent correlations, and the univariate marginal parameters that are not regression coefficients. We implement a maximum simulated likelihood method, which is based on evaluating the multidimensional integrals of the likelihood with randomized quasi-Monte Carlo methods. Asymptotic and small-sample efficiency calculations show that our method is nearly as efficient as maximum likelihood for fully specified multivariate normal copula-based models. An illustrative example is given to show the use of our simulated likelihood method.  相似文献   

5.
The class of Multivariate BiLinear GARCH (MBL-GARCH) models is proposed and its statistical properties are investigated. The model can be regarded as a generalization to a multivariate setting of the univariate BL-GARCH model proposed by Storti and Vitale (Stat Methods Appl 12:19–40, 2003a; Comput Stat 18:387–400, 2003b). It is shown how MBL-GARCH models allow to account for asymmetric effects in both conditional variances and correlations. An EM algorithm for the maximum likelihood estimation of the model parameters is derived. Furthermore, in order to test for the appropriateness of the conditional variance and covariance specifications, a set of robust conditional moments test statistics are defined. Finally, the effectiveness of MBL-GARCH models in a risk management setting is assessed by means of an application to the estimation of the optimal hedge ratio in futures hedging.  相似文献   

6.
The multivariate Student-t copula family is used in statistical finance and other areas when there is tail dependence in the data. It often is a good-fitting copula but can be improved on when there is tail asymmetry. Multivariate skew-t copula families can be considered when there is tail dependence and tail asymmetry, and we show how a fast numerical implementation for maximum likelihood estimation is possible. For the copula implicit in a multivariate skew-t distribution, the fast implementation makes use of (i) monotone interpolation of the univariate marginal quantile function and (ii) a re-parametrization of the correlation matrix. Our numerical approach is tested with simulated data with data-driven parameters. A real data example involves the daily returns of three stock indices: the Nikkei225, S&P500 and DAX. With both unfiltered returns and GARCH/EGARCH filtered returns, we compare the fits of the Azzalini–Capitanio skew-t, generalized hyperbolic skew-t, Student-t, skew-Normal and Normal copulas.  相似文献   

7.
The literature on multivariate stochastic volatility (MSV) models has developed significantly over the last few years. This paper reviews the substantial literature on specification, estimation, and evaluation of MSV models. A wide range of MSV models is presented according to various categories, namely, (i) asymmetric models, (ii) factor models, (iii) time-varying correlation models, and (iv) alternative MSV specifications, including models based on the matrix exponential transformation, the Cholesky decomposition, and the Wishart autoregressive process. Alternative methods of estimation, including quasi-maximum likelihood, simulated maximum likelihood, and Markov chain Monte Carlo methods, are discussed and compared. Various methods of diagnostic checking and model comparison are also reviewed.  相似文献   

8.
The literature on multivariate stochastic volatility (MSV) models has developed significantly over the last few years. This paper reviews the substantial literature on specification, estimation, and evaluation of MSV models. A wide range of MSV models is presented according to various categories, namely, (i) asymmetric models, (ii) factor models, (iii) time-varying correlation models, and (iv) alternative MSV specifications, including models based on the matrix exponential transformation, the Cholesky decomposition, and the Wishart autoregressive process. Alternative methods of estimation, including quasi-maximum likelihood, simulated maximum likelihood, and Markov chain Monte Carlo methods, are discussed and compared. Various methods of diagnostic checking and model comparison are also reviewed.  相似文献   

9.
Multivariate stochastic volatility models with skew distributions are proposed. Exploiting Cholesky stochastic volatility modeling, univariate stochastic volatility processes with leverage effect and generalized hyperbolic skew t-distributions are embedded to multivariate analysis with time-varying correlations. Bayesian modeling allows this approach to provide parsimonious skew structure and to easily scale up for high-dimensional problem. Analyses of daily stock returns are illustrated. Empirical results show that the time-varying correlations and the sparse skew structure contribute to improved prediction performance and Value-at-Risk forecasts.  相似文献   

10.
The authors propose two composite likelihood estimation procedures for multivariate models with regression/univariate and dependence parameters. One is a two‐stage method based on both univariate and bivariate margins. The other estimates all the parameters simultaneously based on bivariate margins. For some special cases, the authors compare their asymptotic efficiencies with the maximum likelihood method. The performance of the two methods is reasonable, except that the first procedure is inefficient for the regression parameters under strong dependence. The second approach is generally better for the regression parameters, but less efficient for the dependence parameters under weak dependence.  相似文献   

11.
Estimating parameters in a stochastic volatility (SV) model is a challenging task. Among other estimation methods and approaches, efficient simulation methods based on importance sampling have been developed for the Monte Carlo maximum likelihood estimation of univariate SV models. This paper shows that importance sampling methods can be used in a general multivariate SV setting. The sampling methods are computationally efficient. To illustrate the versatility of this approach, three different multivariate stochastic volatility models are estimated for a standard data set. The empirical results are compared to those from earlier studies in the literature. Monte Carlo simulation experiments, based on parameter estimates from the standard data set, are used to show the effectiveness of the importance sampling methods.  相似文献   

12.
Efficient estimation of the regression coefficients in longitudinal data analysis requires a correct specification of the covariance structure. If misspecification occurs, it may lead to inefficient or biased estimators of parameters in the mean. One of the most commonly used methods for handling the covariance matrix is based on simultaneous modeling of the Cholesky decomposition. Therefore, in this paper, we reparameterize covariance structures in longitudinal data analysis through the modified Cholesky decomposition of itself. Based on this modified Cholesky decomposition, the within-subject covariance matrix is decomposed into a unit lower triangular matrix involving moving average coefficients and a diagonal matrix involving innovation variances, which are modeled as linear functions of covariates. Then, we propose a fully Bayesian inference for joint mean and covariance models based on this decomposition. A computational efficient Markov chain Monte Carlo method which combines the Gibbs sampler and Metropolis–Hastings algorithm is implemented to simultaneously obtain the Bayesian estimates of unknown parameters, as well as their standard deviation estimates. Finally, several simulation studies and a real example are presented to illustrate the proposed methodology.  相似文献   

13.
Estimating parameters in a stochastic volatility (SV) model is a challenging task. Among other estimation methods and approaches, efficient simulation methods based on importance sampling have been developed for the Monte Carlo maximum likelihood estimation of univariate SV models. This paper shows that importance sampling methods can be used in a general multivariate SV setting. The sampling methods are computationally efficient. To illustrate the versatility of this approach, three different multivariate stochastic volatility models are estimated for a standard data set. The empirical results are compared to those from earlier studies in the literature. Monte Carlo simulation experiments, based on parameter estimates from the standard data set, are used to show the effectiveness of the importance sampling methods.  相似文献   

14.
In this paper, we propose a new generalized autoregressive conditional heteroskedastic (GARCH) model using infinite normal scale-mixtures which can suitably avoid order selection problems in the application of finite normal scale-mixtures. We discuss its theoretical properties and develop a two-stage algorithm for the maximum likelihood estimator to estimate the mixing distribution non-parametric maximum likelihood estimator (NPMLE) as well as GARCH parameters (two-stage MLE). For the estimation of a mixing distribution, we employ a fast computational algorithm proposed by Wang [On fast computation of the non-parametric maximum likelihood estimate of a mixing distribution. J R Stat Soc Ser B. 2007;69:185–198] under the gradient characterization of the non-parametric mixture likelihood. The GARCH parameters are then estimated either using the expectation-mazimization algorithm or general optimization scheme. In addition, we propose a new forecasting algorithm of value-at-risk (VaR) using the two-stage MLE and the NPMLE. Through a simulation study and real data analysis, we compare the performance of the two-stage MLE with the existing ones including quasi-maximum likelihood estimator based on the standard normal density and the finite normal mixture quasi maximum estimated-likelihood estimator (cf. Lee S, Lee T. Inference for Box–Cox transformed threshold GARCH models with nuisance parameters. Scand J Stat. 2012;39:568–589) in terms of the relative efficiency and accuracy of VaR forecasting.  相似文献   

15.
We develop a discrete-time affine stochastic volatility model with time-varying conditional skewness (SVS). Importantly, we disentangle the dynamics of conditional volatility and conditional skewness in a coherent way. Our approach allows current asset returns to be asymmetric conditional on current factors and past information, which we term contemporaneous asymmetry. Conditional skewness is an explicit combination of the conditional leverage effect and contemporaneous asymmetry. We derive analytical formulas for various return moments that are used for generalized method of moments (GMM) estimation. Applying our approach to S&P500 index daily returns and option data, we show that one- and two-factor SVS models provide a better fit for both the historical and the risk-neutral distribution of returns, compared to existing affine generalized autoregressive conditional heteroscedasticity (GARCH), and stochastic volatility with jumps (SVJ) models. Our results are not due to an overparameterization of the model: the one-factor SVS models have the same number of parameters as their one-factor GARCH competitors and less than the SVJ benchmark.  相似文献   

16.
ABSTRACT

ARMA–GARCH models are widely used to model the conditional mean and conditional variance dynamics of returns on risky assets. Empirical results suggest heavy-tailed innovations with positive extreme value index for these models. Hence, one may use extreme value theory to estimate extreme quantiles of residuals. Using weak convergence of the weighted sequential tail empirical process of the residuals, we derive the limiting distribution of extreme conditional Value-at-Risk (CVaR) and conditional expected shortfall (CES) estimates for a wide range of extreme value index estimators. To construct confidence intervals, we propose to use self-normalization. This leads to improved coverage vis-à-vis the normal approximation, while delivering slightly wider confidence intervals. A data-driven choice of the number of upper order statistics in the estimation is suggested and shown to work well in simulations. An application to stock index returns documents the improvements of CVaR and CES forecasts.  相似文献   

17.
A likelihood ratio test is derived for comparing the performance potential of a subset of a population of financial assets to the performance potential of the entire population. The test is shown to be equivalent to a test for zero intercept in a multivariate normal regression model. Rao's F approximation to Wilks' Lamda is shown to be equivalent in this case to the conventional F test used to test the significance of a subset of regressors in a univariate multiple-regression model. The test is illustrated using a sample of returns from ten stocks from the New York Stock Exchange.  相似文献   

18.
In this paper, we propose a new generalized alpha-skew-T (GAST) distribution for generalized autoregressive conditional heteroskedasticity (GARCH) models in modelling daily Value-at-Risk (VaR). Some mathematical properties of the proposed distribution are derived including density function, moments and stochastic representation. The maximum likelihood estimation method is discussed to estimate parameters via a simulation study. Then, the real data application on S&P-500 index is performed to investigate the performance of GARCH models specified under GAST innovation distribution with respect to normal, Student's-t and Skew-T models in terms of the VaR accuracy. Backtesting methodology is used to compare the out-of-sample performance of the VaR models. The results show that GARCH models with GAST innovation distribution outperforms among others and generates the most conservative VaR forecasts for all confidence levels and for both long and short positions.  相似文献   

19.
We introduce a new multivariate GARCH model with multivariate thresholds in conditional correlations and develop a two-step estimation procedure that is feasible in large dimensional applications. Optimal threshold functions are estimated endogenously from the data and the model conditional covariance matrix is ensured to be positive definite. We study the empirical performance of our model in two applications using U.S. stock and bond market data. In both applications our model has, in terms of statistical and economic significance, higher forecasting power than several other multivariate GARCH models for conditional correlations.  相似文献   

20.
ARCH/GARCH representations of financial series usually attempt to model the serial correlation structure of squared returns. Although it is undoubtedly true that squared returns are correlated, there is increasing empirical evidence of stronger correlation in the absolute returns than in squared returns. Rather than assuming an explicit form for volatility, we adopt an approximation approach; we approximate the γth power of volatility by an asymmetric GARCH function with the power index γ chosen so that the approximation is optimum. Asymptotic normality is established for both the quasi-maximum likelihood estimator (qMLE) and the least absolute deviations estimator (LADE) in our approximation setting. A consequence of our approach is a relaxation of the usual stationarity condition for GARCH models. In an application to real financial datasets, the estimated values for γ are found to be close to one, consistent with the stylized fact that the strongest autocorrelation is found in the absolute returns. A simulation study illustrates that the qMLE is inefficient for models with heavy-tailed errors, whereas the LADE is more robust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号