首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The purpose of this article was to conduct a risk‐based study based on a linkage of experimental human influenza infections and fluctuation analysis of airway function to assess whether influenza viral infection was risk factor for exacerbations of chronic occupational asthma. Here we provided a comprehensive probabilistic analysis aimed at quantifying influenza‐associated exacerbations risk for occupational asthmatics, based on a combination of published distributions of viral shedding and symptoms scores and lung respiratory system properties characterized by long‐range peak expiratory flow (PEF) dynamics. Using a coupled detrended fluctuation analysis‐experimental human influenza approach, we estimated the conditional probability of moderate or severe lung airway obstruction and hence the exacerbations risk of influenza‐associated occupational asthma in individuals. The long‐range correlation exponent (α) was used as a predictor of future exacerbations risk of influenza‐associated asthma. For our illustrative distribution of PEF fluctuations and influenza‐induced asthma exacerbations risk relations, we found that the probability of exacerbations risk can be limited to below 50% by keeping α to below 0.53. This study also found that limiting wheeze scores to 0.56 yields a 75% probability of influenza‐associated asthma exacerbations risk and a limit of 0.34 yields a 50% probability that may give a representative estimate of the distribution of chronic respiratory system properties. This study implicates that influenza viral infection is an important risk factor for exacerbations of chronic occupational asthma.  相似文献   

2.
Models of influenza transmission have focused on the ability of vaccination, antiviral therapy, and social distancing strategies to mitigate epidemics. Influenza transmission, however, may also be interrupted by hygiene interventions such as frequent hand washing and wearing masks or respirators. We apply a model of influenza disease transmission that incorporates hygiene and social distancing interventions. The model describes population mixing as a Poisson process, and the probability of infection upon contact between an infectious and susceptible person is parameterized by p. While social distancing interventions modify contact rates in the population, hygiene interventions modify p. Public health decision making involves tradeoffs, and we introduce an objective function that considers the direct costs of interventions and new infections to determine the optimum intervention type (social distancing versus hygiene intervention) and population compliance for epidemic mitigation. Significant simplifications have been made in these models. However, we demonstrate that the method is feasible, provides plausible results, and is sensitive to the selection of model parameters. Specifically, we show that the optimum combination of nonpharmaceutical interventions depends upon the probability of infection, intervention compliance, and duration of infectiousness. Means by which realism can be increased in the method are discussed.  相似文献   

3.
Toxoplasma gondii is a protozoan parasite that is responsible for approximately 24% of deaths attributed to foodborne pathogens in the United States. It is thought that a substantial portion of human T. gondii infections is acquired through the consumption of meats. The dose‐response relationship for human exposures to T. gondii‐infected meat is unknown because no human data are available. The goal of this study was to develop and validate dose‐response models based on animal studies, and to compute scaling factors so that animal‐derived models can predict T. gondii infection in humans. Relevant studies in literature were collected and appropriate studies were selected based on animal species, stage, genotype of T. gondii, and route of infection. Data were pooled and fitted to four sigmoidal‐shaped mathematical models, and model parameters were estimated using maximum likelihood estimation. Data from a mouse study were selected to develop the dose‐response relationship. Exponential and beta‐Poisson models, which predicted similar responses, were selected as reasonable dose‐response models based on their simplicity, biological plausibility, and goodness fit. A confidence interval of the parameter was determined by constructing 10,000 bootstrap samples. Scaling factors were computed by matching the predicted infection cases with the epidemiological data. Mouse‐derived models were validated against data for the dose‐infection relationship in rats. A human dose‐response model was developed as P (d) = 1–exp (–0.0015 × 0.005 × d) or P (d) = 1–(1 + d × 0.003 / 582.414)?1.479. Both models predict the human response after consuming T. gondii‐infected meats, and provide an enhanced risk characterization in a quantitative microbial risk assessment model for this pathogen.  相似文献   

4.
Food‐borne infection is caused by intake of foods or beverages contaminated with microbial pathogens. Dose‐response modeling is used to estimate exposure levels of pathogens associated with specific risks of infection or illness. When a single dose‐response model is used and confidence limits on infectious doses are calculated, only data uncertainty is captured. We propose a method to estimate the lower confidence limit on an infectious dose by including model uncertainty and separating it from data uncertainty. The infectious dose is estimated by a weighted average of effective dose estimates from a set of dose‐response models via a Kullback information criterion. The confidence interval for the infectious dose is constructed by the delta method, where data uncertainty is addressed by a bootstrap method. To evaluate the actual coverage probabilities of the lower confidence limit, a Monte Carlo simulation study is conducted under sublinear, linear, and superlinear dose‐response shapes that can be commonly found in real data sets. Our model‐averaging method achieves coverage close to nominal in almost all cases, thus providing a useful and efficient tool for accurate calculation of lower confidence limits on infectious doses.  相似文献   

5.
We review approaches for characterizing “peak” exposures in epidemiologic studies and methods for incorporating peak exposure metrics in dose–response assessments that contribute to risk assessment. The focus was on potential etiologic relations between environmental chemical exposures and cancer risks. We searched the epidemiologic literature on environmental chemicals classified as carcinogens in which cancer risks were described in relation to “peak” exposures. These articles were evaluated to identify some of the challenges associated with defining and describing cancer risks in relation to peak exposures. We found that definitions of peak exposure varied considerably across studies. Of nine chemical agents included in our review of peak exposure, six had epidemiologic data used by the U.S. Environmental Protection Agency (US EPA) in dose–response assessments to derive inhalation unit risk values. These were benzene, formaldehyde, styrene, trichloroethylene, acrylonitrile, and ethylene oxide. All derived unit risks relied on cumulative exposure for dose–response estimation and none, to our knowledge, considered peak exposure metrics. This is not surprising, given the historical linear no‐threshold default model (generally based on cumulative exposure) used in regulatory risk assessments. With newly proposed US EPA rule language, fuller consideration of alternative exposure and dose–response metrics will be supported. “Peak” exposure has not been consistently defined and rarely has been evaluated in epidemiologic studies of cancer risks. We recommend developing uniform definitions of “peak” exposure to facilitate fuller evaluation of dose response for environmental chemicals and cancer risks, especially where mechanistic understanding indicates that the dose response is unlikely linear and that short‐term high‐intensity exposures increase risk.  相似文献   

6.
In this paper, we demonstrate how public opinion surveys can be designed to collect information pertinent to computational behavior modeling, and we present the results of a public opinion and behavior survey conducted during the 2009–2010 H1N1 influenza pandemic. The results are used to parameterize the Health Belief Model of individual health‐protective decision making. Survey subjects were asked questions about their perceptions of the then‐circulating influenza and attitudes towards two personal protective behaviors: vaccination and avoidance of crowds. We empirically address two important issues in applying the Health Belief Model of behavior to computational infectious disease simulation: (1) the factors dynamically influencing the states of the Health Belief Model variables and (2) the appropriateness of the Health Belief Model in describing self‐protective behavior in the context of pandemic influenza.  相似文献   

7.
The outbreak of the pandemic influenza H1N1 2009 (swine flu) between March and April 2009 challenged the health services around the world. Indeed, misconceptions and worries have led the public to refuse to comply with precautionary measures. Moreover, there have been limited efforts to develop models incorporating cognitive, social‐contextual, and affective factors as predictors of compliance with recommended behaviors. The aim of this study was to apply a social‐cognitive model of risk perception and individual response to pandemic influenza H1N1 in a representative sample of Italian population. A sample of 1,010 Italians of at least 18 years of age took part in a telephone survey. The survey included measures of perceived preparedness of institutions, family members and friends’ levels of worry, exposure to media campaigns (social‐contextual factors), perceived coping efficacy, likelihood of infection, perceived seriousness, personal impact, and severity of illness (cognitive evaluations), affective response and compliance with recommended behaviors. Results demonstrated that affective response fully mediated the relationship between cognitive evaluations and social‐contextual factors (with the exception of exposure to media campaigns) and compliance with recommended behaviors. Perceived coping efficacy and preparedness of institutions were not related to compliance with recommended behaviors.  相似文献   

8.
Probability models incorporating a deterministic versus stochastic infectious dose are described for estimating infection risk due to airborne pathogens that infect at low doses. Such pathogens can be occupational hazards or candidate agents for bioterrorism. Inputs include parameters for the infectious dose model, distribution parameters for ambient pathogen concentrations, the breathing rate, the duration of an exposure period, the anticipated number of exposure periods, and, if a respirator device is used, distribution parameters for respirator penetration values. Application of the models is illustrated with a hypothetical scenario involving exposure to Coccidioides immitis, a fungus present in soil in areas of the southwestern United States Inhaling C. immitis spores causes a respiratory tract infection and is a recognized occupational hazard in jobs involving soil dust exposure in endemic areas An uncertainty analysis is applied to risk estimation in the context of selecting respiratory protection with a desired degree of efficacy.  相似文献   

9.
The use of thimerosal preservative in childhood vaccines has been largely eliminated over the past decade in the United States because vaccines have been reformulated in single‐dose vials that do not require preservative. An exception is the inactivated influenza vaccines, which are formulated in both multidose vials requiring preservative and preservative‐free single‐dose vials. As part of an ongoing evaluation by USFDA of the safety of biologics throughout their lifecycle, the infant body burden of mercury following scheduled exposures to thimerosal preservative in inactivated influenza vaccines in the United States was estimated and compared to the infant body burden of mercury following daily exposures to dietary methylmercury at the reference dose established by the USEPA. Body burdens were estimated using kinetic parameters derived from experiments conducted in infant monkeys that were exposed episodically to thimerosal or MeHg at identical doses. We found that the body burden of mercury (AUC) in infants (including low birth weight) over the first 4.5 years of life following yearly exposures to thimerosal was two orders of magnitude lower than that estimated for exposures to the lowest regulatory threshold for MeHg over the same time period. In addition, peak body burdens of mercury following episodic exposures to thimerosal in this worst‐case analysis did not exceed the corresponding safe body burden of mercury from methylmercury at any time, even for low‐birth‐weight infants. Our pharmacokinetic analysis supports the acknowledged safety of thimerosal when used as a preservative at current levels in certain multidose infant vaccines in the United States.  相似文献   

10.
Compliance Versus Risk in Assessing Occupational Exposures   总被引:1,自引:0,他引:1  
Assessments of occupational exposures to chemicals are generally based upon the practice of compliance testing in which the probability of compliance is related to the exceedance [γ, the likelihood that any measurement would exceed an occupational exposure limit (OEL)] and the number of measurements obtained. On the other hand, workers’ chronic health risks generally depend upon cumulative lifetime exposures which are not directly related to the probability of compliance. In this paper we define the probability of “overexposure” (θ) as the likelihood that individual risk (a function of cumulative exposure) exceeds the risk inherent in the OEL (a function of the OEL and duration of exposure). We regard θ as a relevant measure of individual risk for chemicals, such as carcinogens, which produce chronic effects after long-term exposures but not necessarily for acutely-toxic substances which can produce effects relatively quickly. We apply a random-effects model to data from 179 groups of workers, exposed to a variety of chemical agents, and obtain parameter estimates for the group mean exposure and the within- and between-worker components of variance. These estimates are then combined with OELs to generate estimates of γ and θ. We show that compliance testing can significantly underestimate the health risk when sample sizes are small. That is, there can be large probabilities of compliance with typical sample sizes, despite the fact that large proportions of the working population have individual risks greater than the risk inherent in the OEL. We demonstrate further that, because the relationship between θ and γ depends upon the within- and between-worker components of variance, it cannot be assumed a priori that exceedance is a conservative surrogate for overexposure. Thus, we conclude that assessment practices which focus upon either compliance or exceedance are problematic and recommend that employers evaluate exposures relative to the probabilities of overexposure.  相似文献   

11.
Outbreaks of influenza represent an important health concern worldwide. In many cases, vaccines are only partially successful in reducing the infection rate, and respiratory protective devices (RPDs) are used as a complementary countermeasure. In devising a protection strategy against influenza for a given population, estimates of the level of protection afforded by different RPDs is valuable. In this article, a risk assessment model previously developed in general form was used to estimate the effectiveness of different types of protective equipment in reducing the rate of infection in an influenza outbreak. It was found that a 50% compliance in donning the device resulted in a significant (at least 50% prevalence and 20% cumulative incidence) reduction in risk for fitted and unfitted N95 respirators, high‐filtration surgical masks, and both low‐filtration and high‐filtration pediatric masks. An 80% compliance rate essentially eliminated the influenza outbreak. The results of the present study, as well as the application of the model to related influenza scenarios, are potentially useful to public health officials in decisions involving resource allocation or education strategies.  相似文献   

12.
Survival models are developed to predict response and time‐to‐response for mortality in rabbits following exposures to single or multiple aerosol doses of Bacillus anthracis spores. Hazard function models were developed for a multiple‐dose data set to predict the probability of death through specifying functions of dose response and the time between exposure and the time‐to‐death (TTD). Among the models developed, the best‐fitting survival model (baseline model) is an exponential dose–response model with a Weibull TTD distribution. Alternative models assessed use different underlying dose–response functions and use the assumption that, in a multiple‐dose scenario, earlier doses affect the hazard functions of each subsequent dose. In addition, published mechanistic models are analyzed and compared with models developed in this article. None of the alternative models that were assessed provided a statistically significant improvement in fit over the baseline model. The general approach utilizes simple empirical data analysis to develop parsimonious models with limited reliance on mechanistic assumptions. The baseline model predicts TTDs consistent with reported results from three independent high‐dose rabbit data sets. More accurate survival models depend upon future development of dose–response data sets specifically designed to assess potential multiple‐dose effects on response and time‐to‐response. The process used in this article to develop the best‐fitting survival model for exposure of rabbits to multiple aerosol doses of B. anthracis spores should have broad applicability to other host–pathogen systems and dosing schedules because the empirical modeling approach is based upon pathogen‐specific empirically‐derived parameters.  相似文献   

13.
Assessing exposures to hazards in order to characterize risk is at the core of occupational hygiene. Our study examined dropped ceiling systems commonly used in schools and commercial buildings and lay‐in ceiling panels that may have contained asbestos prior to the mid to late 1970s. However, most ceiling panels and tiles do not contain asbestos. Since asbestos risk relates to dose, we estimated the distribution of eight‐hour TWA concentrations and one‐year exposures (a one‐year dose equivalent) to asbestos fibers (asbestos f/cc‐years) for five groups of workers who may encounter dropped ceilings: specialists, generalists, maintenance workers, nonprofessional do‐it‐yourself (DIY) persons, and other tradespersons who are bystanders to ceiling work. Concentration data (asbestos f/cc) were obtained through two exposure assessment studies in the field and one chamber study. Bayesian and stochastic models were applied to estimate distributions of eight‐hour TWAs and annual exposures (dose). The eight‐hour TWAs for all work categories were below current and historic occupational exposure limits (OELs). Exposures to asbestos fibers from dropped ceiling work would be categorized as “highly controlled” for maintenance workers and “well controlled” for remaining work categories, according to the American Industrial Hygiene Association exposure control rating system. Annual exposures (dose) were found to be greatest for specialists, followed by maintenance workers, generalists, bystanders, and DIY. On a comparative basis, modeled dose and thus risk from dropped ceilings for all work categories were orders of magnitude lower than published exposures for other sources of banned friable asbestos‐containing building material commonly encountered in construction trades.  相似文献   

14.
This study develops dose–response models for Ebolavirus using previously published data sets from the open literature. Two such articles were identified in which three different species of nonhuman primates were challenged by aerosolized Ebolavirus in order to study pathology and clinical disease progression. Dose groups were combined and pooled across each study in order to facilitate modeling. The endpoint of each experiment was death. The exponential and exact beta-Poisson models were fit to the data using maximum likelihood estimation. The exact beta-Poisson was deemed the recommended model because it more closely approximated the probability of response at low doses though both models provided a good fit. Although transmission is generally considered to be dominated by person-to-person contact, aerosolization is a possible route of exposure. If possible, this route of exposure could be particularly concerning for persons in occupational roles managing contaminated liquid wastes from patients being treated for Ebola infection and the wastewater community responsible for disinfection. Therefore, this study produces a necessary mathematical relationship between exposure dose and risk of death for the inhalation route of exposure that can support quantitative microbial risk assessment aimed at informing risk mitigation strategies including personal protection policies against occupational exposures.  相似文献   

15.
Face masks have traditionally been used in general infection control, but their efficacy at the population level in preventing transmission of influenza viruses has not been studied in detail. Data from published clinical studies indicate that the infectivity of influenza A virus is probably very high, so that transmission of infection may involve low doses of virus. At low doses, the relation between dose and the probability of infection is approximately linear, so that the reduction in infection risk is proportional to the reduction in exposure due to particle retention of the mask. A population transmission model was set up to explore the impact of population‐wide mask use, allowing estimation of the effects of mask efficacy and coverage (fraction of the population wearing masks) on the basic reproduction number and the infection attack rate. We conclude that population‐wide use of face masks could make an important contribution in delaying an influenza pandemic. Mask use also reduces the reproduction number, possibly even to levels sufficient for containing an influenza outbreak.  相似文献   

16.
Elodie Adida 《Risk analysis》2011,31(10):1622-1631
An effective nonpharmaceutical intervention for influenza interrupts an exposure route that contributes significantly to infection risk. Herein, we use uncertainty analysis (point‐interval method) and Monte Carlo simulation to explore the magnitude of infection risk and predominant route of exposure. We utilized a previously published mathematical model of a susceptible person attending a bed‐ridden infectious person. Infection risk is sensitive to the magnitude of virus emission and contact rates. The contribution of droplet spray exposure to infection risk increases with cough frequency, and decreases with virus concentration in cough particles. We consider two infectivity scenarios: greater infectivity of virus deposited in the upper respiratory tract than virus inhaled in respirable aerosols, based on human studies; and equal infectivity in the two locations, based on studies in guinea pigs. Given that virus have equal probability of infection throughout the respiratory tract, the mean overall infection risk is 9.8 × 10?2 (95th percentile 0.78). However, when virus in the upper respiratory tract is less infectious than inhaled virus, the overall infection risk is several orders of magnitude lower. In this event, inhalation is a significant exposure route. Contact transmission is important in both infectivity scenarios. The presence of virus in only respirable particles increases the mean overall infection risk by 1–3 orders of magnitude, with inhalation contributing ≥ 99% of the infection risk. The analysis indicates that reduction of uncertainties in the concentration of virus in expiratory particles of different sizes, expiratory event frequency, and infectivity at different sites in the respiratory tract will clarify the predominate exposure routes for influenza.  相似文献   

17.
《Risk analysis》2018,38(6):1183-1201
In assessing environmental health risks, the risk characterization step synthesizes information gathered in evaluating exposures to stressors together with dose–response relationships, characteristics of the exposed population, and external environmental conditions. This article summarizes key steps of a cumulative risk assessment (CRA) followed by a discussion of considerations for characterizing cumulative risks. Cumulative risk characterizations differ considerably from single chemical‐ or single source‐based risk characterization. CRAs typically focus on a specific population instead of a pollutant or pollutant source and should include an evaluation of all relevant sources contributing to the exposures in the population and other factors that influence dose–response relationships. Second, CRAs may include influential environmental and population‐specific conditions, involving multiple chemical and nonchemical stressors. Third, a CRA could examine multiple health effects, reflecting joint toxicity and the potential for toxicological interactions. Fourth, the complexities often necessitate simplifying methods, including judgment‐based and semi‐quantitative indices that collapse disparate data into numerical scores. Fifth, because of the higher dimensionality and potentially large number of interactions, information needed to quantify risk is typically incomplete, necessitating an uncertainty analysis. Three approaches that could be used for characterizing risks in a CRA are presented: the multiroute hazard index, stressor grouping by exposure and toxicity, and indices for screening multiple factors and conditions. Other key roles of the risk characterization in CRAs are also described, mainly the translational aspect of including a characterization summary for lay readers (in addition to the technical analysis), and placing the results in the context of the likely risk‐based decisions.  相似文献   

18.
Pandemic influenza represents a serious threat not only to the population of the United States, but also to its economy. In this study, we analyze the total economic consequences of potential influenza outbreaks in the United States for four cases based on the distinctions between disease severity and the presence/absence of vaccinations. The analysis is based on data and parameters on influenza obtained from the Centers for Disease Control and the general literature. A state‐of‐the‐art economic impact modeling approach, computable general equilibrium, is applied to analyze a wide range of potential impacts stemming from the outbreaks. This study examines the economic impacts from changes in medical expenditures and workforce participation, and also takes into consideration different types of avoidance behavior and resilience actions not previously fully studied. Our results indicate that, in the absence of avoidance and resilience effects, a pandemic influenza outbreak could result in a loss in U.S. GDP of $25.4 billion, but that vaccination could reduce the losses to $19.9 billion. When behavioral and resilience factors are taken into account, a pandemic influenza outbreak could result in GDP losses of $45.3 billion without vaccination and $34.4 billion with vaccination. These results indicate the importance of including a broader set of causal factors to achieve more accurate estimates of the total economic impacts of not just pandemic influenza but biothreats in general. The results also highlight a number of actionable items that government policymakers and public health officials can use to help reduce potential economic losses from the outbreaks.  相似文献   

19.
Quantitative microbiological risk assessment was used to quantify the risk associated with the exposure to Legionella pneumophila in a whirlpool. Conceptually, air bubbles ascend to the surface, intercepting Legionella from the traversed water. At the surface the bubble bursts into dominantly noninhalable jet drops and inhalable film drops. Assuming that film drops carry half of the intercepted Legionella, a total of four (95% interval: 1–9) and 4.5×104 (4.4×104 – 4.7×104) cfu/min were estimated to be aerosolized for concentrations of 1 and 1,000 legionellas per liter, respectively. Using a dose‐response model for guinea pigs to represent humans, infection risks for active whirlpool use with 100 cfu/L water for 15 minutes were 0.29 (~0.11–0.48) for susceptible males and 0.22 (~0.06–0.42) for susceptible females. A L. pneumophila concentration of ≥1,000 cfu/L water was estimated to nearly always cause an infection (mean: 0.95; 95% interval: 0.9–~1). Estimated infection risks were time‐dependent, ranging from 0.02 (0–0.11) for 1‐minute exposures to 0.93 (0.86–0.97) for 2‐hour exposures when the L. pneumophila concentration was 100 cfu/L water. Pool water in Dutch bathing establishments should contain <100 cfu Legionella/L water. This study suggests that stricter provisions might be required to assure adequate public health protection.  相似文献   

20.
Dose–response modeling of biological agents has traditionally focused on describing laboratory‐derived experimental data. Limited consideration has been given to understanding those factors that are controlled in a laboratory, but are likely to occur in real‐world scenarios. In this study, a probabilistic framework is developed that extends Brookmeyer's competing‐risks dose–response model to allow for variation in factors such as dose‐dispersion, dose‐deposition, and other within‐host parameters. With data sets drawn from dose–response experiments of inhalational anthrax, plague, and tularemia, we illustrate how for certain cases, there is the potential for overestimation of infection numbers arising from models that consider only the experimental data in isolation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号