首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spatial and/or temporal clustering of pathogens will invalidate the commonly used assumption of Poisson‐distributed pathogen counts (doses) in quantitative microbial risk assessment. In this work, the theoretically predicted effect of spatial clustering in conventional “single‐hit” dose‐response models is investigated by employing the stuttering Poisson distribution, a very general family of count distributions that naturally models pathogen clustering and contains the Poisson and negative binomial distributions as special cases. The analysis is facilitated by formulating the dose‐response models in terms of probability generating functions. It is shown formally that the theoretical single‐hit risk obtained with a stuttering Poisson distribution is lower than that obtained with a Poisson distribution, assuming identical mean doses. A similar result holds for mixed Poisson distributions. Numerical examples indicate that the theoretical single‐hit risk is fairly insensitive to moderate clustering, though the effect tends to be more pronounced for low mean doses. Furthermore, using Jensen's inequality, an upper bound on risk is derived that tends to better approximate the exact theoretical single‐hit risk for highly overdispersed dose distributions. The bound holds with any dose distribution (characterized by its mean and zero inflation index) and any conditional dose‐response model that is concave in the dose variable. Its application is exemplified with published data from Norovirus feeding trials, for which some of the administered doses were prepared from an inoculum of aggregated viruses. The potential implications of clustering for dose‐response assessment as well as practical risk characterization are discussed.  相似文献   

2.
Toxoplasma gondii is a protozoan parasite that is responsible for approximately 24% of deaths attributed to foodborne pathogens in the United States. It is thought that a substantial portion of human T. gondii infections is acquired through the consumption of meats. The dose‐response relationship for human exposures to T. gondii‐infected meat is unknown because no human data are available. The goal of this study was to develop and validate dose‐response models based on animal studies, and to compute scaling factors so that animal‐derived models can predict T. gondii infection in humans. Relevant studies in literature were collected and appropriate studies were selected based on animal species, stage, genotype of T. gondii, and route of infection. Data were pooled and fitted to four sigmoidal‐shaped mathematical models, and model parameters were estimated using maximum likelihood estimation. Data from a mouse study were selected to develop the dose‐response relationship. Exponential and beta‐Poisson models, which predicted similar responses, were selected as reasonable dose‐response models based on their simplicity, biological plausibility, and goodness fit. A confidence interval of the parameter was determined by constructing 10,000 bootstrap samples. Scaling factors were computed by matching the predicted infection cases with the epidemiological data. Mouse‐derived models were validated against data for the dose‐infection relationship in rats. A human dose‐response model was developed as P (d) = 1–exp (–0.0015 × 0.005 × d) or P (d) = 1–(1 + d × 0.003 / 582.414)?1.479. Both models predict the human response after consuming T. gondii‐infected meats, and provide an enhanced risk characterization in a quantitative microbial risk assessment model for this pathogen.  相似文献   

3.
This study developed dose response models for determining the probability of eye or central nervous system infections from previously conducted studies using different strains of Acanthamoeba spp. The data were a result of animal experiments using mice and rats exposed corneally and intranasally to the pathogens. The corneal inoculations of Acanthamoeba isolate Ac 118 included varied amounts of Corynebacterium xerosis and were best fit by the exponential model. Virulence increased with higher levels of C. xerosis. The Acanthamoeba culbertsoni intranasal study with death as an endpoint of response was best fit by the beta‐Poisson model. The HN‐3 strain of A. castellanii was studied with an intranasal exposure and three different endpoints of response. For all three studies, the exponential model was the best fit. A model based on pooling data sets of the intranasal exposure and death endpoint resulted in an LD50 of 19,357 amebae. The dose response models developed in this study are an important step towards characterizing the risk associated with free‐living amoeba like Acanthamoeba in drinking water distribution systems. Understanding the human health risk posed by free‐living amoeba will allow for quantitative microbial risk assessments that support building design decisions to minimize opportunities for pathogen growth and survival.  相似文献   

4.
5.
Tucker Burch 《Risk analysis》2019,39(3):599-615
The assumptions underlying quantitative microbial risk assessment (QMRA) are simple and biologically plausible, but QMRA predictions have never been validated for many pathogens. The objective of this study was to validate QMRA predictions against epidemiological measurements from outbreaks of waterborne gastrointestinal disease. I screened 2,000 papers and identified 12 outbreaks with the necessary data: disease rates measured using epidemiological methods and pathogen concentrations measured in the source water. Eight of the 12 outbreaks were caused by Cryptosporidium, three by Giardia, and one by norovirus. Disease rates varied from 5.5 × 10?6 to 1.1 × 10?2 cases/person‐day, and reported pathogen concentrations varied from 1.2 × 10?4 to 8.6 × 102 per liter. I used these concentrations with single‐hit dose–response models for all three pathogens to conduct QMRA, producing both point and interval predictions of disease rates for each outbreak. Comparison of QMRA predictions to epidemiological measurements showed good agreement; interval predictions contained measured disease rates for 9 of 12 outbreaks, with point predictions off by factors of 1.0–120 (median = 4.8). Furthermore, 11 outbreaks occurred at mean doses of less than 1 pathogen per exposure. Measured disease rates for these outbreaks were clearly consistent with a single‐hit model, and not with a “two‐hit” threshold model. These results demonstrate the validity of QMRA for predicting disease rates due to Cryptosporidium and Giardia.  相似文献   

6.
Listeria monocytogenes is a leading cause of hospitalization, fetal loss, and death due to foodborne illnesses in the United States. A quantitative assessment of the relative risk of listeriosis associated with the consumption of 23 selected categories of ready‐to‐eat foods, published by the U.S. Department of Health and Human Services and the U.S. Department of Agriculture in 2003, has been instrumental in identifying the food products and practices that pose the greatest listeriosis risk and has guided the evaluation of potential intervention strategies. Dose‐response models, which quantify the relationship between an exposure dose and the probability of adverse health outcomes, were essential components of the risk assessment. However, because of data gaps and limitations in the available data and modeling approaches, considerable uncertainty existed. Since publication of the risk assessment, new data have become available for modeling L. monocytogenes dose‐response. At the same time, recent advances in the understanding of L. monocytogenes pathophysiology and strain diversity have warranted a critical reevaluation of the published dose‐response models. To discuss strategies for modeling L. monocytogenes dose‐response, the Interagency Risk Assessment Consortium (IRAC) and the Joint Institute for Food Safety and Applied Nutrition (JIFSAN) held a scientific workshop in 2011 (details available at http://foodrisk.org/irac/events/ ). The main findings of the workshop and the most current and relevant data identified during the workshop are summarized and presented in the context of L. monocytogenes dose‐response. This article also discusses new insights on dose‐response modeling for L. monocytogenes and research opportunities to meet future needs.  相似文献   

7.
Mycobacterium avium subspecies paratuberculosis (MAP) causes chronic inflammation of the intestines in humans, ruminants, and other species. It is the causative agent of Johne's disease in cattle, and has been implicated as the causative agent of Crohn's disease in humans. To date, no quantitative microbial risk assessment (QMRA) for MAP utilizing a dose‐response function exists. The objective of this study is to develop a nested dose‐response model for infection from oral exposure to MAP utilizing data from the peer‐reviewed literature. Four studies amenable to dose‐response modeling were identified in the literature search and optimized to the one‐parameter exponential or two‐parameter beta‐Poisson dose‐response models. A nesting analysis was performed on all permutations of the candidate data sets to determine the acceptability of pooling data sets across host species. Three of four data sets exhibited goodness of fit to at least one model. All three data sets exhibited good fit to the beta‐Poisson model, and one data set exhibited goodness of fit, and best fit, to the exponential model. Two data sets were successfully nested using the beta‐Poisson model with parameters α = 0.0978 and N50 = 2.70 × 102 CFU. These data sets were derived from sheep and red deer host species, indicating successful interspecies nesting, and demonstrate the highly infective nature of MAP. The nested dose‐response model described should be used for future QMRA research regarding oral exposure to MAP.  相似文献   

8.
The effect of bioaerosol size was incorporated into predictive dose‐response models for the effects of inhaled aerosols of Francisella tularensis (the causative agent of tularemia) on rhesus monkeys and guinea pigs with bioaerosol diameters ranging between 1.0 and 24 μm. Aerosol‐size‐dependent models were formulated as modification of the exponential and β‐Poisson dose‐response models and model parameters were estimated using maximum likelihood methods and multiple data sets of quantal dose‐response data for which aerosol sizes of inhaled doses were known. Analysis of F. tularensis dose‐response data was best fit by an exponential dose‐response model with a power function including the particle diameter size substituting for the rate parameter k scaling the applied dose. There were differences in the pathogen's aerosol‐size‐dependence equation and models that better represent the observed dose‐response results than the estimate derived from applying the model developed by the International Commission on Radiological Protection (ICRP, 1994) that relies on differential regional lung deposition for human particle exposure.  相似文献   

9.
Dose‐response models are essential to quantitative microbial risk assessment (QMRA), providing a link between levels of human exposure to pathogens and the probability of negative health outcomes. In drinking water studies, the class of semi‐mechanistic models known as single‐hit models, such as the exponential and the exact beta‐Poisson, has seen widespread use. In this work, an attempt is made to carefully develop the general mathematical single‐hit framework while explicitly accounting for variation in (1) host susceptibility and (2) pathogen infectivity. This allows a precise interpretation of the so‐called single‐hit probability and precise identification of a set of statistical independence assumptions that are sufficient to arrive at single‐hit models. Further analysis of the model framework is facilitated by formulating the single‐hit models compactly using probability generating and moment generating functions. Among the more practically relevant conclusions drawn are: (1) for any dose distribution, variation in host susceptibility always reduces the single‐hit risk compared to a constant host susceptibility (assuming equal mean susceptibilities), (2) the model‐consistent representation of complete host immunity is formally demonstrated to be a simple scaling of the response, (3) the model‐consistent expression for the total risk from repeated exposures deviates (gives lower risk) from the conventional expression used in applications, and (4) a model‐consistent expression for the mean per‐exposure dose that produces the correct total risk from repeated exposures is developed.  相似文献   

10.
Comparison of Six Dose-Response Models for Use with Food-Borne Pathogens   总被引:6,自引:0,他引:6  
Food-related illness in the United States is estimated to affect over six million people per year and cost the economy several billion dollars. These illnesses and costs could be reduced if minimum infectious doses were established and used as the basis of regulations and monitoring. However, standard methodologies for dose-response assessment are not yet formulated for microbial risk assessment. The objective of this study was to compare dose-response models for food-borne pathogens and determine which models were most appropriate for a range of pathogens. The statistical models proposed in the literature and chosen for comparison purposes were log-normal, log-logistic, exponential, -Poisson and Weibull-Gamma. These were fit to four data sets also taken from published literature, Shigella flexneri, Shigella dysenteriae,Campylobacter jejuni, and Salmonella typhosa, using the method of maximum likelihood. The Weibull-gamma, the only model with three parameters, was also the only model capable of fitting all the data sets examined using the maximum likelihood estimation for comparisons. Infectious doses were also calculated using each model. Within any given data set, the infectious dose estimated to affect one percent of the population ranged from one order of magnitude to as much as nine orders of magnitude, illustrating the differences in extrapolation of the dose response models. More data are needed to compare models and examine extrapolation from high to low doses for food-borne pathogens.  相似文献   

11.
Elizabethkingia spp. are common environmental pathogens responsible for infections in more vulnerable populations. Although the exposure routes of concern are not well understood, some hospital-associated outbreaks have indicated possible waterborne transmission. In order to facilitate quantitative microbial risk assessment (QMRA) for Elizabethkingia spp., this study fit dose–response models to frog and mice datasets that evaluated intramuscular and intraperitoneal exposure to Elizabethkingia spp. The frog datasets could be pooled, and the exact beta-Poisson model was the best fitting model with optimized parameters α  = 0.52 and β = 86,351. Using the exact beta-Poisson model, the dose of Elizabethkingia miricola resulting in a 50% morbidity response (LD50) was estimated to be approximately 237,000 CFU. The model developed herein was used to estimate the probability of infection for a hospital patient under a modeled exposure scenario involving a contaminated medical device and reported Elizabethkingia spp. concentrations isolated from hospital sinks after an outbreak. The median exposure dose was approximately 3 CFU/insertion event, and the corresponding median risk of infection was 3.4E-05. The median risk estimated in this case study was lower than the 3% attack rate observed in a previous outbreak, however, there are noted gaps pertaining to the possible concentrations of Elizabethkingia spp. in tap water and the most likely exposure routes. This is the first dose–response model developed for Elizabethkingia spp. thus enabling future risk assessments to help determine levels of risk and potential effective risk management strategies.  相似文献   

12.
Food‐borne infection is caused by intake of foods or beverages contaminated with microbial pathogens. Dose‐response modeling is used to estimate exposure levels of pathogens associated with specific risks of infection or illness. When a single dose‐response model is used and confidence limits on infectious doses are calculated, only data uncertainty is captured. We propose a method to estimate the lower confidence limit on an infectious dose by including model uncertainty and separating it from data uncertainty. The infectious dose is estimated by a weighted average of effective dose estimates from a set of dose‐response models via a Kullback information criterion. The confidence interval for the infectious dose is constructed by the delta method, where data uncertainty is addressed by a bootstrap method. To evaluate the actual coverage probabilities of the lower confidence limit, a Monte Carlo simulation study is conducted under sublinear, linear, and superlinear dose‐response shapes that can be commonly found in real data sets. Our model‐averaging method achieves coverage close to nominal in almost all cases, thus providing a useful and efficient tool for accurate calculation of lower confidence limits on infectious doses.  相似文献   

13.
Charles N. Haas 《Risk analysis》2011,31(10):1576-1596
Human Brucellosis is one of the most common zoonotic diseases worldwide. Disease transmission often occurs through the handling of domestic livestock, as well as ingestion of unpasteurized milk and cheese, but can have enhanced infectivity if aerosolized. Because there is no human vaccine available, rising concerns about the threat of Brucellosis to human health and its inclusion in the Center for Disease Control's Category B Bioterrorism/Select Agent List make a better understanding of the dose‐response relationship of this microbe necessary. Through an extensive peer‐reviewed literature search, candidate dose‐response data were appraised so as to surpass certain standards for quality. The statistical programming language, “R,” was used to compute the maximum likelihood estimation to fit two models, the exponential and the approximate beta‐Poisson (widely used for quantitative risk assessment) to dose‐response data. Dose‐response models were generated for prevalent species of Brucella: Br. suis, Br. melitensis, and Br. abortus. Dose‐response models were created for aerosolized Br. suis exposure to guinea pigs from pooled studies. A parallel model for guinea pigs inoculated through both aerosol and subcutaneous routes with Br. melitensis showed that the median infectious dose corresponded to a 30 colony‐forming units (CFU) dose of Br. suis, much less than the N50 dose of about 94 CFU for Br. melitensis organisms. When Br. melitensis was tested subcutaneously on mice, the N50 dose was higher, 1,840 CFU. A dose‐response model was constructed from pooled data for mice, rhesus macaques, and humans inoculated through three routes (subcutaneously/aerosol/intradermally) with Br. melitensis.  相似文献   

14.
《Risk analysis》2018,38(8):1672-1684
A disease burden (DB) evaluation for environmental pathogens is generally performed using disability‐adjusted life years with the aim of providing a quantitative assessment of the health hazard caused by pathogens. A critical step in the preparation for this evaluation is the estimation of morbidity between exposure and disease occurrence. In this study, the method of a traditional dose–response analysis was first reviewed, and then a combination of the theoretical basis of a “single‐hit” and an “infection‐illness” model was performed by incorporating two critical factors: the “infective coefficient” and “infection duration.” This allowed a dose–morbidity model to be built for direct use in DB calculations. In addition, human experimental data for typical intestinal pathogens were obtained for model validation, and the results indicated that the model was well fitted and could be further used for morbidity estimation. On this basis, a real case of a water reuse project was selected for model application, and the morbidity as well as the DB caused by intestinal pathogens during water reuse was evaluated. The results show that the DB attributed to Enteroviruses was significant, while that for enteric bacteria was negligible. Therefore, water treatment technology should be further improved to reduce the exposure risk of Enteroviruses . Since road flushing was identified as the major exposure route, human contact with reclaimed water through this pathway should be limited. The methodology proposed for model construction not only makes up for missing data of morbidity during risk evaluation, but is also necessary to quantify the maximum possible DB.  相似文献   

15.
Evaluations of Listeria monocytogenes dose‐response relationships are crucially important for risk assessment and risk management, but are complicated by considerable variability across population subgroups and L. monocytogenes strains. Despite difficulties associated with the collection of adequate data from outbreak investigations or sporadic cases, the limitations of currently available animal models, and the inability to conduct human volunteer studies, some of the available data now allow refinements of the well‐established exponential L. monocytogenes dose response to more adequately represent extremely susceptible population subgroups and highly virulent L. monocytogenes strains. Here, a model incorporating adjustments for variability in L. monocytogenes strain virulence and host susceptibility was derived for 11 population subgroups with similar underlying comorbidities using data from multiple sources, including human surveillance and food survey data. In light of the unique inherent properties of L. monocytogenes dose response, a lognormal‐Poisson dose‐response model was chosen, and proved able to reconcile dose‐response relationships developed based on surveillance data with outbreak data. This model was compared to a classical beta‐Poisson dose‐response model, which was insufficiently flexible for modeling the specific case of L. monocytogenes dose‐response relationships, especially in outbreak situations. Overall, the modeling results suggest that most listeriosis cases are linked to the ingestion of food contaminated with medium to high concentrations of L. monocytogenes. While additional data are needed to refine the derived model and to better characterize and quantify the variability in L. monocytogenes strain virulence and individual host susceptibility, the framework derived here represents a promising approach to more adequately characterize the risk of listeriosis in highly susceptible population subgroups.  相似文献   

16.
The application of quantitative microbial risk assessments (QMRAs) to understand and mitigate risks associated with norovirus is increasingly common as there is a high frequency of outbreaks worldwide. A key component of QMRA is the dose–response analysis, which is the mathematical characterization of the association between dose and outcome. For Norovirus, multiple dose–response models are available that assume either a disaggregated or an aggregated intake dose. This work reviewed the dose–response models currently used in QMRA, and compared predicted risks from waterborne exposures (recreational and drinking) using all available dose–response models. The results found that the majority of published QMRAs of norovirus use the 1F1 hypergeometric dose–response model with α = 0.04, β = 0.055. This dose–response model predicted relatively high risk estimates compared to other dose–response models for doses in the range of 1–1,000 genomic equivalent copies. The difference in predicted risk among dose–response models was largest for small doses, which has implications for drinking water QMRAs where the concentration of norovirus is low. Based on the review, a set of best practices was proposed to encourage the careful consideration and reporting of important assumptions in the selection and use of dose–response models in QMRA of norovirus. Finally, in the absence of one best norovirus dose–response model, multiple models should be used to provide a range of predicted outcomes for probability of infection.  相似文献   

17.
Estimating microbial dose–response is an important aspect of a food safety risk assessment. In recent years, there has been considerable interest to advance these models with potential incorporation of gene expression data. The aim of this study was to develop a novel machine learning model that considers the weights of expression of Salmonella genes that could be associated with illness, given exposure, in hosts. Here, an elastic net-based weighted Poisson regression method was proposed to identify Salmonella enterica genes that could be significantly associated with the illness response, irrespective of serovar. The best-fit elastic net model was obtained by 10-fold cross-validation. The best-fit elastic net model identified 33 gene expression–dose interaction terms that added to the predictability of the model. Of these, nine genes associated with Salmonella metabolism and virulence were found to be significant by the best-fit Poisson regression model (p < 0.05). This method could improve or redefine dose–response relationships for illness from relative proportions of significant genes from a microbial genetic dataset, which would help in refining endpoint and risk estimations.  相似文献   

18.
Survival models are developed to predict response and time‐to‐response for mortality in rabbits following exposures to single or multiple aerosol doses of Bacillus anthracis spores. Hazard function models were developed for a multiple‐dose data set to predict the probability of death through specifying functions of dose response and the time between exposure and the time‐to‐death (TTD). Among the models developed, the best‐fitting survival model (baseline model) is an exponential dose–response model with a Weibull TTD distribution. Alternative models assessed use different underlying dose–response functions and use the assumption that, in a multiple‐dose scenario, earlier doses affect the hazard functions of each subsequent dose. In addition, published mechanistic models are analyzed and compared with models developed in this article. None of the alternative models that were assessed provided a statistically significant improvement in fit over the baseline model. The general approach utilizes simple empirical data analysis to develop parsimonious models with limited reliance on mechanistic assumptions. The baseline model predicts TTDs consistent with reported results from three independent high‐dose rabbit data sets. More accurate survival models depend upon future development of dose–response data sets specifically designed to assess potential multiple‐dose effects on response and time‐to‐response. The process used in this article to develop the best‐fitting survival model for exposure of rabbits to multiple aerosol doses of B. anthracis spores should have broad applicability to other host–pathogen systems and dosing schedules because the empirical modeling approach is based upon pathogen‐specific empirically‐derived parameters.  相似文献   

19.
Dose‐response models are the essential link between exposure assessment and computed risk values in quantitative microbial risk assessment, yet the uncertainty that is inherent to computed risks because the dose‐response model parameters are estimated using limited epidemiological data is rarely quantified. Second‐order risk characterization approaches incorporating uncertainty in dose‐response model parameters can provide more complete information to decisionmakers by separating variability and uncertainty to quantify the uncertainty in computed risks. Therefore, the objective of this work is to develop procedures to sample from posterior distributions describing uncertainty in the parameters of exponential and beta‐Poisson dose‐response models using Bayes's theorem and Markov Chain Monte Carlo (in OpenBUGS). The theoretical origins of the beta‐Poisson dose‐response model are used to identify a decomposed version of the model that enables Bayesian analysis without the need to evaluate Kummer confluent hypergeometric functions. Herein, it is also established that the beta distribution in the beta‐Poisson dose‐response model cannot address variation among individual pathogens, criteria to validate use of the conventional approximation to the beta‐Poisson model are proposed, and simple algorithms to evaluate actual beta‐Poisson probabilities of infection are investigated. The developed MCMC procedures are applied to analysis of a case study data set, and it is demonstrated that an important region of the posterior distribution of the beta‐Poisson dose‐response model parameters is attributable to the absence of low‐dose data. This region includes beta‐Poisson models for which the conventional approximation is especially invalid and in which many beta distributions have an extreme shape with questionable plausibility.  相似文献   

20.
Quantitative microbial risk assessment (QMRA) is widely accepted for characterizing the microbial risks associated with food, water, and wastewater. Single‐hit dose‐response models are the most commonly used dose‐response models in QMRA. Denoting as the probability of infection at a given mean dose d, a three‐parameter generalized QMRA beta‐Poisson dose‐response model, , is proposed in which the minimum number of organisms required for causing infection, Kmin, is not fixed, but a random variable following a geometric distribution with parameter . The single‐hit beta‐Poisson model, , is a special case of the generalized model with Kmin = 1 (which implies ). The generalized beta‐Poisson model is based on a conceptual model with greater detail in the dose‐response mechanism. Since a maximum likelihood solution is not easily available, a likelihood‐free approximate Bayesian computation (ABC) algorithm is employed for parameter estimation. By fitting the generalized model to four experimental data sets from the literature, this study reveals that the posterior median estimates produced fall short of meeting the required condition of = 1 for single‐hit assumption. However, three out of four data sets fitted by the generalized models could not achieve an improvement in goodness of fit. These combined results imply that, at least in some cases, a single‐hit assumption for characterizing the dose‐response process may not be appropriate, but that the more complex models may be difficult to support especially if the sample size is small. The three‐parameter generalized model provides a possibility to investigate the mechanism of a dose‐response process in greater detail than is possible under a single‐hit model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号