首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we consider the problem of variable selection for partially varying coefficient single-index model, and present a regularized variable selection procedure by combining basis function approximations with smoothly clipped absolute deviation penalty. The proposed procedure simultaneously selects significant variables in the single-index parametric components and the nonparametric coefficient function components. With appropriate selection of the tuning parameters, the consistency of the variable selection procedure and the oracle property of the estimators are established. Finite sample performance of the proposed method is illustrated by a simulation study and real data analysis.  相似文献   

2.
Variable selection is fundamental to high-dimensional multivariate generalized linear models. The smoothly clipped absolute deviation (SCAD) method can solve the problem of variable selection and estimation. The choice of the tuning parameter in the SCAD method is critical, which controls the complexity of the selected model. This article proposes a criterion to select the tuning parameter for the SCAD method in multivariate generalized linear models, which is shown to be able to identify the true model consistently. Simulation studies are conducted to support theoretical findings, and two real data analysis are given to illustrate the proposed method.  相似文献   

3.
This paper considers variable and factor selection in factor analysis. We treat the factor loadings for each observable variable as a group, and introduce a weighted sparse group lasso penalty to the complete log-likelihood. The proposal simultaneously selects observable variables and latent factors of a factor analysis model in a data-driven fashion; it produces a more flexible and sparse factor loading structure than existing methods. For parameter estimation, we derive an expectation-maximization algorithm that optimizes the penalized log-likelihood. The tuning parameters of the procedure are selected by a likelihood cross-validation criterion that yields satisfactory results in various simulation settings. Simulation results reveal that the proposed method can better identify the possibly sparse structure of the true factor loading matrix with higher estimation accuracy than existing methods. A real data example is also presented to demonstrate its performance in practice.  相似文献   

4.
Sparsity-inducing penalties are useful tools for variable selection and are also effective for regression problems where the data are functions. We consider the problem of selecting not only variables but also decision boundaries in multiclass logistic regression models for functional data, using sparse regularization. The parameters of the functional logistic regression model are estimated in the framework of the penalized likelihood method with the sparse group lasso-type penalty, and then tuning parameters for the model are selected using the model selection criterion. The effectiveness of the proposed method is investigated through simulation studies and the analysis of a gene expression data set.  相似文献   

5.
Abstract

Variable selection in finite mixture of regression (FMR) models is frequently used in statistical modeling. The majority of applications of variable selection in FMR models use a normal distribution for regression error. Such assumptions are unsuitable for a set of data containing a group or groups of observations with heavy tails and outliers. In this paper, we introduce a robust variable selection procedure for FMR models using the t distribution. With appropriate selection of the tuning parameters, the consistency and the oracle property of the regularized estimators are established. To estimate the parameters of the model, we develop an EM algorithm for numerical computations and a method for selecting tuning parameters adaptively. The parameter estimation performance of the proposed model is evaluated through simulation studies. The application of the proposed model is illustrated by analyzing a real data set.  相似文献   

6.
The generalized cross-validation (GCV) method has been a popular technique for the selection of tuning parameters for smoothing and penalty, and has been a standard tool to select tuning parameters for shrinkage models in recent works. Its computational ease and robustness compared to the cross-validation method makes it competitive for model selection as well. It is well known that the GCV method performs well for linear estimators, which are linear functions of the response variable, such as ridge estimator. However, it may not perform well for nonlinear estimators since the GCV emphasizes linear characteristics by taking the trace of the projection matrix. This paper aims to explore the GCV for nonlinear estimators and to further extend the results to correlated data in longitudinal studies. We expect that the nonlinear GCV and quasi-GCV developed in this paper will provide similar tools for the selection of tuning parameters in linear penalty models and penalized GEE models.  相似文献   

7.
In this article, a new robust variable selection approach is introduced by combining the robust generalized estimating equations and adaptive LASSO penalty function for longitudinal generalized linear models. Then, an efficient weighted Gaussian pseudo-likelihood version of the BIC (WGBIC) is proposed to choose the tuning parameter in the process of robust variable selection and to select the best working correlation structure simultaneously. Meanwhile, the oracle properties of the proposed robust variable selection method are established and an efficient algorithm combining the iterative weighted least squares and minorization–maximization is proposed to implement robust variable selection and parameter estimation.  相似文献   

8.
Case-cohort designs are commonly used in large epidemiological studies to reduce the cost associated with covariate measurement. In many such studies the number of covariates is very large. An efficient variable selection method is needed for case-cohort studies where the covariates are only observed in a subset of the sample. Current literature on this topic has been focused on the proportional hazards model. However, in many studies the additive hazards model is preferred over the proportional hazards model either because the proportional hazards assumption is violated or the additive hazards model provides more relevent information to the research question. Motivated by one such study, the Atherosclerosis Risk in Communities (ARIC) study, we investigate the properties of a regularized variable selection procedure in stratified case-cohort design under an additive hazards model with a diverging number of parameters. We establish the consistency and asymptotic normality of the penalized estimator and prove its oracle property. Simulation studies are conducted to assess the finite sample performance of the proposed method with a modified cross-validation tuning parameter selection methods. We apply the variable selection procedure to the ARIC study to demonstrate its practical use.  相似文献   

9.
Abstract. Lasso and other regularization procedures are attractive methods for variable selection, subject to a proper choice of shrinkage parameter. Given a set of potential subsets produced by a regularization algorithm, a consistent model selection criterion is proposed to select the best one among this preselected set. The approach leads to a fast and efficient procedure for variable selection, especially in high‐dimensional settings. Model selection consistency of the suggested criterion is proven when the number of covariates d is fixed. Simulation studies suggest that the criterion still enjoys model selection consistency when d is much larger than the sample size. The simulations also show that our approach for variable selection works surprisingly well in comparison with existing competitors. The method is also applied to a real data set.  相似文献   

10.
We propose marginalized lasso, a new nonconvex penalization for variable selection in regression problem. The marginalized lasso penalty is motivated from integrating out the penalty parameter in the original lasso penalty with a gamma prior distribution. This study provides a thresholding rule and a lasso-based iterative algorithm for parameter estimation in the marginalized lasso. We also provide a coordinate descent algorithm to efficiently optimize the marginalized lasso penalized regression. Numerical comparison studies are provided to demonstrate its competitiveness over the existing sparsity-inducing penalizations and suggest some guideline for tuning parameter selection.  相似文献   

11.
A regression model with skew-normal errors provides a useful extension for ordinary normal regression models when the data set under consideration involves asymmetric outcomes. Variable selection is an important issue in all regression analyses, and in this paper, we investigate the simultaneously variable selection in joint location and scale models of the skew-normal distribution. We propose a unified penalized likelihood method which can simultaneously select significant variables in the location and scale models. Furthermore, the proposed variable selection method can simultaneously perform parameter estimation and variable selection in the location and scale models. With appropriate selection of the tuning parameters, we establish the consistency and the oracle property of the regularized estimators. Simulation studies and a real example are used to illustrate the proposed methodologies.  相似文献   

12.
We propose penalized minimum φ-divergence estimator for parameter estimation and variable selection in logistic regression. Using an appropriate penalty function, we show that penalized φ-divergence estimator has oracle property. With probability tending to 1, penalized φ-divergence estimator identifies the true model and estimates nonzero coefficients as efficiently as if the sparsity of the true model was known in advance. The advantage of penalized φ-divergence estimator is that it produces estimates of nonzero parameters efficiently than penalized maximum likelihood estimator when sample size is small and is equivalent to it for large one. Numerical simulations confirm our findings.  相似文献   

13.
In survival studies, current status data are frequently encountered when some individuals in a study are not successively observed. This paper considers the problem of simultaneous variable selection and parameter estimation in the high-dimensional continuous generalized linear model with current status data. We apply the penalized likelihood procedure with the smoothly clipped absolute deviation penalty to select significant variables and estimate the corresponding regression coefficients. With a proper choice of tuning parameters, the resulting estimator is shown to be a root n/pn-consistent estimator under some mild conditions. In addition, we show that the resulting estimator has the same asymptotic distribution as the estimator obtained when the true model is known. The finite sample behavior of the proposed estimator is evaluated through simulation studies and a real example.  相似文献   

14.
Abstract

In this article, we focus on the variable selection for semiparametric varying coefficient partially linear model with response missing at random. Variable selection is proposed based on modal regression, where the non parametric functions are approximated by B-spline basis. The proposed procedure uses SCAD penalty to realize variable selection of parametric and nonparametric components simultaneously. Furthermore, we establish the consistency, the sparse property and asymptotic normality of the resulting estimators. The penalty estimation parameters value of the proposed method is calculated by EM algorithm. Simulation studies are carried out to assess the finite sample performance of the proposed variable selection procedure.  相似文献   

15.
We consider variable selection in linear regression of geostatistical data that arise often in environmental and ecological studies. A penalized least squares procedure is studied for simultaneous variable selection and parameter estimation. Various penalty functions are considered including smoothly clipped absolute deviation. Asymptotic properties of penalized least squares estimates, particularly the oracle properties, are established, under suitable regularity conditions imposed on a random field model for the error process. Moreover, computationally feasible algorithms are proposed for estimating regression coefficients and their standard errors. Finite‐sample properties of the proposed methods are investigated in a simulation study and comparison is made among different penalty functions. The methods are illustrated by an ecological dataset of landcover in Wisconsin. The Canadian Journal of Statistics 37: 607–624; 2009 © 2009 Statistical Society of Canada  相似文献   

16.
This article develops the adaptive elastic net generalized method of moments (GMM) estimator in large-dimensional models with potentially (locally) invalid moment conditions, where both the number of structural parameters and the number of moment conditions may increase with the sample size. The basic idea is to conduct the standard GMM estimation combined with two penalty terms: the adaptively weighted lasso shrinkage and the quadratic regularization. It is a one-step procedure of valid moment condition selection, nonzero structural parameter selection (i.e., model selection), and consistent estimation of the nonzero parameters. The procedure achieves the standard GMM efficiency bound as if we know the valid moment conditions ex ante, for which the quadratic regularization is important. We also study the tuning parameter choice, with which we show that selection consistency still holds without assuming Gaussianity. We apply the new estimation procedure to dynamic panel data models, where both the time and cross-section dimensions are large. The new estimator is robust to possible serial correlations in the regression error terms.  相似文献   

17.
A new estimation procedure is proposed for the single-index quantile regression model. Compared to existing work, this approach is non-iterative and hence, computationally efficient. The proposed method not only estimates the index parameter and the link function but also selects variables simultaneously. The performance of the variable selection is enhanced by a fully adaptive penalty function motivated by the sliced inverse regression technique. Finite sample performance is studied through a simulation study that compares the proposed method with existing work under several criteria. A data analysis is given that highlights the usefulness of the proposed methodology.  相似文献   

18.
ABSTRACT

In this paper, we study a novelly robust variable selection and parametric component identification simultaneously in varying coefficient models. The proposed estimator is based on spline approximation and two smoothly clipped absolute deviation (SCAD) penalties through rank regression, which is robust with respect to heavy-tailed errors or outliers in the response. Furthermore, when the tuning parameter is chosen by modified BIC criterion, we show that the proposed procedure is consistent both in variable selection and the separation of varying and constant coefficients. In addition, the estimators of varying coefficients possess the optimal convergence rate under some assumptions, and the estimators of constant coefficients have the same asymptotic distribution as their counterparts obtained when the true model is known. Simulation studies and a real data example are undertaken to assess the finite sample performance of the proposed variable selection procedure.  相似文献   

19.
闫懋博  田茂再 《统计研究》2021,38(1):147-160
Lasso等惩罚变量选择方法选入模型的变量数受到样本量限制。文献中已有研究变量系数显著性的方法舍弃了未选入模型的变量含有的信息。本文在变量数大于样本量即p>n的高维情况下,使用随机化bootstrap方法获得变量权重,在计算适应性Lasso时构建选择事件的条件分布并剔除系数不显著的变量,以得到最终估计结果。本文的创新点在于提出的方法突破了适应性Lasso可选变量数的限制,当观测数据含有大量干扰变量时能够有效地识别出真实变量与干扰变量。与现有的惩罚变量选择方法相比,多种情境下的模拟研究展示了所提方法在上述两个问题中的优越性。实证研究中对NCI-60癌症细胞系数据进行了分析,结果较以往文献有明显改善。  相似文献   

20.
A number of nonstationary models have been developed to estimate extreme events as function of covariates. A quantile regression (QR) model is a statistical approach intended to estimate and conduct inference about the conditional quantile functions. In this article, we focus on the simultaneous variable selection and parameter estimation through penalized quantile regression. We conducted a comparison of regularized Quantile Regression model with B-Splines in Bayesian framework. Regularization is based on penalty and aims to favor parsimonious model, especially in the case of large dimension space. The prior distributions related to the penalties are detailed. Five penalties (Lasso, Ridge, SCAD0, SCAD1 and SCAD2) are considered with their equivalent expressions in Bayesian framework. The regularized quantile estimates are then compared to the maximum likelihood estimates with respect to the sample size. A Markov Chain Monte Carlo (MCMC) algorithms are developed for each hierarchical model to simulate the conditional posterior distribution of the quantiles. Results indicate that the SCAD0 and Lasso have the best performance for quantile estimation according to Relative Mean Biais (RMB) and the Relative Mean-Error (RME) criteria, especially in the case of heavy distributed errors. A case study of the annual maximum precipitation at Charlo, Eastern Canada, with the Pacific North Atlantic climate index as covariate is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号