共查询到3条相似文献,搜索用时 0 毫秒
1.
We used an agent‐based modeling (ABM) framework and developed a mathematical model to explain the complex dynamics of microbial persistence and spread within a food facility and to aid risk managers in identifying effective mitigation options. The model explicitly considered personal hygiene practices by food handlers as well as their activities and simulated a spatially explicit dynamic system representing complex interaction patterns among food handlers, facility environment, and foods. To demonstrate the utility of the model in a decision‐making context, we created a hypothetical case study and used it to compare different risk mitigation strategies for reducing contamination and spread of Listeria monocytogenes in a food facility. Model results indicated that areas with no direct contact with foods (e.g., loading dock and restroom) can serve as contamination niches and recontaminate areas that have direct contact with food products. Furthermore, food handlers’ behaviors, including, for example, hygiene and sanitation practices, can impact the persistence of microbial contamination in the facility environment and the spread of contamination to prepared foods. Using this case study, we also demonstrated benefits of an ABM framework for addressing food safety in a complex system in which emergent system‐level responses are predicted using a bottom‐up approach that observes individual agents (e.g., food handlers) and their behaviors. Our model can be applied to a wide variety of pathogens, food commodities, and activity patterns to evaluate efficacy of food‐safety management practices and quantify contamination reductions associated with proposed mitigation strategies in food facilities. 相似文献
2.
Mark R. Powell 《Risk analysis》2013,33(3):385-396
A recent paper by Ferrier and Buzby provides a framework for selecting the sample size when testing a lot of beef trim for Escherichia coli O157:H7 that equates the averted costs of recalls and health damages from contaminated meats sold to consumers with the increased costs of testing while allowing for uncertainty about the underlying prevalence of contamination. Ferrier and Buzby conclude that the optimal sample size is larger than the current sample size. However, Ferrier and Buzby's optimization model has a number of errors, and their simulations failed to consider available evidence about the likelihood of the scenarios explored under the model. After correctly modeling microbial prevalence as dependent on portion size and selecting model inputs based on available evidence, the model suggests that the optimal sample size is zero under most plausible scenarios. It does not follow, however, that sampling beef trim for E. coli O157:H7, or food safety sampling more generally, should be abandoned. Sampling is not generally cost effective as a direct consumer safety control measure due to the extremely large sample sizes required to provide a high degree of confidence of detecting very low acceptable defect levels. Food safety verification sampling creates economic incentives for food producing firms to develop, implement, and maintain effective control measures that limit the probability and degree of noncompliance with regulatory limits or private contract specifications. 相似文献
3.
《Risk analysis》2018,38(2):392-409
The relative contributions of exposure pathways associated with cattle‐manure‐borne Escherichia coli O157:H7 on public health have yet to be fully characterized. A stochastic, quantitative microbial risk assessment (QMRA) model was developed to describe a hypothetical cattle farm in order to compare the relative importance of five routes of exposure, including aquatic recreation downstream of the farm, consumption of contaminated ground beef processed with limited interventions, consumption of leafy greens, direct animal contact, and the recreational use of a cattle pasture. To accommodate diverse environmental and hydrological pathways, existing QMRAs were integrated with novel and simplistic climate and field‐level submodels. The model indicated that direct animal contact presents the greatest risk of illness per exposure event during the high pathogen shedding period. However, when accounting for the frequency of exposure, using a high‐risk exposure‐receptor profile, consumption of ground beef was associated with the greatest risk of illness. Additionally, the model was used to evaluate the efficacy of hypothetical interventions affecting one or more exposure routes; concurrent evaluation of multiple routes allowed for the assessment of the combined effect of preharvest interventions across exposure pathways—which may have been previously underestimated—as well as the assessment of the effect of additional downstream interventions. This analysis represents a step towards a full evaluation of the risks associated with multiple exposure pathways; future incorporation of variability associated with environmental parameters and human behaviors would allow for a comprehensive assessment of the relative contribution of exposure pathways at the population level. 相似文献