首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Composite quantile regression (CQR) is motivated by the desire to have an estimator for linear regression models that avoids the breakdown of the least-squares estimator when the error variance is infinite, while having high relative efficiency even when the least-squares estimator is fully efficient. Here, we study two weighting schemes to further improve the efficiency of CQR, motivated by Jiang et al. [Oracle model selection for nonlinear models based on weighted composite quantile regression. Statist Sin. 2012;22:1479–1506]. In theory the two weighting schemes are asymptotically equivalent to each other and always result in more efficient estimators compared with CQR. Although the first weighting scheme is hard to implement, it sheds light on in what situations the improvement is expected to be large. A main contribution is to theoretically and empirically identify that standard CQR has good performance compared with weighted CQR only when the error density is logistic or close to logistic in shape, which was not noted in the literature.  相似文献   

2.
Abstract

In this article, a new composite quantile regression estimation (CQR) approach is proposed for partially linear varying coefficient models (PLVCM) under composite quantile loss function with B-spline approximations. The major advantage of the proposed procedures over the existing ones is easy to implement using existing software, and it requires no specification of the error distributions. Under the regularity conditions, the consistency and asymptotic normality of the estimators are also derived. Finally, a simulation study and a real data application are undertaken to assess the finite sample performance of the proposed estimation procedure.  相似文献   

3.
Abstract

In this article, we propose a new regression method called general composite quantile regression (GCQR) which releases the unrealistic finite error variance assumption being imposed by the traditional least squares (LS) method. Unlike the recently proposed composite quantile regression (CQR) method, our proposed GCQR allows any continuous non-uniform density/weight function. As a result, determination of the number of uniform quantile positions is not required. Most importantly, the proposed GCQR criterion can be readily transformed to a linear programing problem, which substantially reduces the computing time. Our theoretical and empirical results show that the GCQR is generally efficient than the CQR and LS if the weight function is appropriately chosen. The oracle properties of the penalized GCQR are also provided. Our simulation results are consistent with the derived theoretical findings. A real data example is analyzed to demonstrate our methodologies.  相似文献   

4.
In this paper, we consider the weighted composite quantile regression for linear model with left-truncated data. The adaptive penalized procedure for variable selection is proposed. The asymptotic normality and oracle property of the resulting estimators are also established. Simulation studies are conducted to illustrate the finite sample performance of the proposed methods.  相似文献   

5.
6.
In this paper, we investigate empirical likelihood (EL) inferences via weighted composite quantile regression for non linear models. Under regularity conditions, we establish that the proposed empirical log-likelihood ratio is asymptotically chi-squared, and then the confidence intervals for the regression coefficients are constructed. The proposed method avoids estimating the unknown error density function involved in the asymptotic covariance matrix of the estimators. Simulations suggest that the proposed EL procedure is more efficient and robust, and a real data analysis is used to illustrate the performance.  相似文献   

7.
The composite quantile regression (CQR for short) provides an efficient and robust estimation for regression coefficients. In this paper we introduce two adaptive CQR methods. We make two contributions to the quantile regression literature. The first is that, both adaptive estimators treat the quantile levels as realizations of a random variable. This is quite different from the classic CQR in which the quantile levels are typically equally spaced, or generally, are treated as fixed values. Because the asymptotic variances of the adaptive estimators depend upon the generic distribution of the quantile levels, it has the potential to enhance estimation efficiency of the classic CQR. We compare the asymptotic variance of the estimator obtained by the CQR with that obtained by quantile regressions at each single quantile level. The second contribution is that, in terms of relative efficiency, the two adaptive estimators can be asymptotically equivalent to the CQR method as long as we choose the generic distribution of the quantile levels properly. This observation is useful in that it allows to perform parallel distributed computing when the computational complexity issue arises for the CQR method. We compare the relative efficiency of the adaptive methods with respect to some existing approaches through comprehensive simulations and an application to a real-world problem.  相似文献   

8.
We consider local linear estimation of varying-coefficient models in which the data are observed with multiplicative distortion which depends on an observed confounding variable. At first, each distortion function is estimated by non parametrically regressing the absolute value of contaminated variable on the confounder. Secondly, the coefficient functions are estimated by the local least square method on the basis of the predictors of latent variables, which are obtained in terms of the estimated distorting functions. We also establish the asymptotic normality of our proposed estimators and discuss the inference about the distortion function. Simulation studies are carried out to assess the finite sample performance of the proposed estimators and a real dataset of Pima Indians diabetes is analyzed for illustration.  相似文献   

9.
Partially linear varying coefficient models (PLVCMs) with heteroscedasticity are considered in this article. Based on composite quantile regression, we develop a weighted composite quantile regression (WCQR) to estimate the non parametric varying coefficient functions and the parametric regression coefficients. The WCQR is augmented using a data-driven weighting scheme. Moreover, the asymptotic normality of proposed estimators for both the parametric and non parametric parts are studied explicitly. In addition, by comparing the asymptotic relative efficiency theoretically and numerically, WCQR method all outperforms the CQR method and some other estimate methods. To achieve sparsity with high-dimensional covariates, we develop a variable selection procedure to select significant parametric components for the PLVCM and prove the method possessing the oracle property. Both simulations and data analysis are conducted to illustrate the finite-sample performance of the proposed methods.  相似文献   

10.
In this paper, we propose robust randomized quantile regression estimators for the mean and (condition) variance functions of the popular heteroskedastic non parametric regression model. Unlike classical approaches which consider quantile as a fixed quantity, our method treats quantile as a uniformly distributed random variable. Our proposed method can be employed to estimate the error distribution, which could significantly improve prediction results. An automatic bandwidth selection scheme will be discussed. Asymptotic properties and relative efficiencies of the proposed estimators are investigated. Our empirical results show that the proposed estimators work well even for random errors with infinite variances. Various numerical simulations and two real data examples are used to demonstrate our methodologies.  相似文献   

11.
Longitudinal data are commonly modeled with the normal mixed-effects models. Most modeling methods are based on traditional mean regression, which results in non robust estimation when suffering extreme values or outliers. Median regression is also not a best choice to estimation especially for non normal errors. Compared to conventional modeling methods, composite quantile regression can provide robust estimation results even for non normal errors. In this paper, based on a so-called pseudo composite asymmetric Laplace distribution (PCALD), we develop a Bayesian treatment to composite quantile regression for mixed-effects models. Furthermore, with the location-scale mixture representation of the PCALD, we establish a Bayesian hierarchical model and achieve the posterior inference of all unknown parameters and latent variables using Markov Chain Monte Carlo (MCMC) method. Finally, this newly developed procedure is illustrated by some Monte Carlo simulations and a case analysis of HIV/AIDS clinical data set.  相似文献   

12.
ABSTRACT

The varying-coefficient single-index model (VCSIM) is a very general and flexible tool for exploring the relationship between a response variable and a set of predictors. Popular special cases include single-index models and varying-coefficient models. In order to estimate the index-coefficient and the non parametric varying-coefficients in the VCSIM, we propose a two-stage composite quantile regression estimation procedure, which integrates the local linear smoothing method and the information of quantile regressions at a number of conditional quantiles of the response variable. We establish the asymptotic properties of the proposed estimators for the index-coefficient and varying-coefficients when the error is heterogeneous. When compared with the existing mean-regression-based estimation method, our simulation results indicate that our proposed method has comparable performance for normal error and is more robust for error with outliers or heavy tail. We illustrate our methodologies with a real example.  相似文献   

13.
It is known that for nonparametric regression, local linear composite quantile regression (local linear CQR) is a more competitive technique than classical local linear regression since it can significantly improve estimation efficiency under a class of non-normal and symmetric error distributions. However, this method only applies to symmetric errors because, without symmetric condition, the estimation bias is non-negligible and therefore the resulting estimator is inconsistent. In this paper, we propose a weighted local linear CQR method for general error conditions. This method applies to both symmetric and asymmetric random errors. Because of the use of weights, the estimation bias is eliminated asymptotically and the asymptotic normality is established. Furthermore, by minimizing asymptotic variance, the optimal weights are computed and consequently the optimal estimate (the most efficient estimate) is obtained. By comparing relative efficiency theoretically or numerically, we can ensure that the new estimation outperforms the local linear CQR estimation. Finite sample behaviors conducted by simulation studies further illustrate the theoretical findings.  相似文献   

14.
Nonparametric additive models are powerful techniques for multivariate data analysis. Although many procedures have been developed for estimating additive components both in mean regression and quantile regression, the problem of selecting relevant components has not been addressed much especially in quantile regression. We present a doubly-penalized estimation procedure for component selection in additive quantile regression models that combines basis function approximation with a ridge-type penalty and a variant of the smoothly clipped absolute deviation penalty. We show that the proposed estimator identifies relevant and irrelevant components consistently and achieves the nonparametric optimal rate of convergence for the relevant components. We also provide an accurate and efficient computation algorithm to implement the estimator and demonstrate its performance through simulation studies. Finally, we illustrate our method via a real data example to identify important body measurements to predict percentage of body fat of an individual.  相似文献   

15.
In this article, we propose a novel robust data-analytic procedure, dynamic quantile regression (DQR), for model selection. It is robust in the sense that it can simultaneously estimate the coefficients and the distribution of errors over a large collection of error distributions even those that are heavy-tailed and may not even possess variances or means; and DQR is easy to implement in the sense that it does not need to decide in advance which quantile(s) should be gathered. Asymptotic properties of related estimators are derived. Simulations and illustrative real examples are also given.  相似文献   

16.
For estimation of time-varying coefficient longitudinal models, the widely used local least-squares (LS) or covariance-weighted local LS smoothing uses information from the local sample average. Motivated by the fact that a combination of multiple quantiles provides a more complete picture of the distribution, we investigate quantile regression-based methods to improve efficiency by optimally combining information across quantiles. Under the working independence scenario, the asymptotic variance of the proposed estimator approaches the Cramér–Rao lower bound. In the presence of dependence among within-subject measurements, we adopt a prewhitening technique to transform regression errors into independent innovations and show that the prewhitened optimally weighted quantile average estimator asymptotically achieves the Cramér–Rao bound for the independent innovations. Fully data-driven bandwidth selection and optimal weights estimation are implemented through a two-step procedure. Monte Carlo studies show that the proposed method delivers more robust and superior overall performance than that of the existing methods.  相似文献   

17.
18.
In this paper, we consider the estimation of partially linear additive quantile regression models where the conditional quantile function comprises a linear parametric component and a nonparametric additive component. We propose a two-step estimation approach: in the first step, we approximate the conditional quantile function using a series estimation method. In the second step, the nonparametric additive component is recovered using either a local polynomial estimator or a weighted Nadaraya–Watson estimator. Both consistency and asymptotic normality of the proposed estimators are established. Particularly, we show that the first-stage estimator for the finite-dimensional parameters attains the semiparametric efficiency bound under homoskedasticity, and that the second-stage estimators for the nonparametric additive component have an oracle efficiency property. Monte Carlo experiments are conducted to assess the finite sample performance of the proposed estimators. An application to a real data set is also illustrated.  相似文献   

19.
Quantile regression provides a flexible platform for evaluating covariate effects on different segments of the conditional distribution of response. As the effects of covariates may change with quantile level, contemporaneously examining a spectrum of quantiles is expected to have a better capacity to identify variables with either partial or full effects on the response distribution, as compared to focusing on a single quantile. Under this motivation, we study a general adaptively weighted LASSO penalization strategy in the quantile regression setting, where a continuum of quantile index is considered and coefficients are allowed to vary with quantile index. We establish the oracle properties of the resulting estimator of coefficient function. Furthermore, we formally investigate a Bayesian information criterion (BIC)-type uniform tuning parameter selector and show that it can ensure consistent model selection. Our numerical studies confirm the theoretical findings and illustrate an application of the new variable selection procedure.  相似文献   

20.
We study the quantile estimation methods for the distortion measurement error data when variables are unobserved and distorted with additive errors by some unknown functions of an observable confounding variable. After calibrating the error-prone variables, we propose the quantile regression estimation procedure and composite quantile estimation procedure. Asymptotic properties of the proposed estimators are established, and we also investigate the asymptotic relative efficiency compared with the least-squares estimator. Simulation studies are conducted to evaluate the performance of the proposed methods, and a real dataset is analyzed as an illustration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号