首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During past few years great attention has been devoted to the analysis of disease incidence and mortality rates, with an explicit focus on modelling geographical variation of rates observed in spatially adjacent regions. The general aim of these contributes has been both to highlight clusters of regions with homogeneous relative risk and to determine the effects of observed and unobserved risk factors related to the analyzed disease. Most of the proposed modelling approaches can be derived as alternative specifications of the components of a general convolution model (Molliè, 1996). In this paper, we consider the semiparametric approach discussed by Schlattmann and Böhning (1993); in particular, we focus on models with an explicit spatially structured component (see Biggeri et al., 2000), and propose alternative choices for the structure of the spatial component.  相似文献   

2.
In some applications, the clustered survival data are arranged spatially such as clinical centers or geographical regions. Incorporating spatial variation in these data not only can improve the accuracy and efficiency of the parameter estimation, but it also investigates the spatial patterns of survivorship for identifying high-risk areas. Competing risks in survival data concern a situation where there is more than one cause of failure, but only the occurrence of the first one is observable. In this paper, we considered Bayesian subdistribution hazard regression models with spatial random effects for the clustered HIV/AIDS data. An intrinsic conditional autoregressive (ICAR) distribution was employed to model the areal spatial random effects. Comparison among competing models was performed by the deviance information criterion. We illustrated the gains of our model through application to the HIV/AIDS data and the simulation studies.KEYWORDS: Competing risks, subdistribution hazard, cumulative incidence function, spatial random effect, Markov chain Monte Carlo  相似文献   

3.
4.
Bayesian hierarchical models are developed to estimate the frequencies of the alleles at the HLA-C locus in the presence of non-identifiable alleles and possible spatial correlations in a large but sparse, spatially defined database from Papua New Guinea. Bayesian model selection methods are applied to investigate the effects of altitude and language on the genetic diversity of HLA-C alleles. The general model includes fixed altitudinal effects, random language effects and random spatially structured location effects. Conditional autoregressive priors are used to incorporate the geographical structure of the map, and Markov chain Monte Carlo simulation methods are applied for estimation and inference. The results show that HLA-C allele frequencies are explained more by linguistic than altitudinal differences, indicating that genetic diversity at this locus in Papua New Guinea probably tracks population movements and is less influenced by natural selection than is variation at HLA-A and HLA-B.  相似文献   

5.
We examine the relationships between electoral socio‐demographic characteristics and two‐party preferences in the six Australian federal elections held between 2001 and 2016. Socio‐demographic information is derived from the Australian Census which occurs every 5 years. Since a census is not directly available for each election, an imputation method is employed to estimate census data for the electorates at the time of each election. This accounts for both spatial and temporal changes in electoral characteristics between censuses. To capture any spatial heterogeneity, a spatial error model is estimated for each election, which incorporates a spatially structured random effect vector. Over time, the impact of most socio‐demographic characteristics that affect electoral two‐party preference do not vary, with age distribution, industry of work, incomes, household mobility and relationships having strong effects in each of the six elections. Education and unemployment are among those that have varying effects. All data featured in this study have been contributed to the eechidna R package (available on CRAN).  相似文献   

6.
The study of spatial variations in disease rates is a common epidemiological approach used to describe the geographical clustering of diseases and to generate hypotheses about the possible 'causes' which could explain apparent differences in risk. Recent statistical and computational developments have led to the use of realistically complex models to account for overdispersion and spatial correlation. However, these developments have focused almost exclusively on spatial modelling of a single disease. Many diseases share common risk factors (smoking being an obvious example) and, if similar patterns of geographical variation of related diseases can be identified, this may provide more convincing evidence of real clustering in the underlying risk surface. We propose a shared component model for the joint spatial analysis of two diseases. The key idea is to separate the underlying risk surface for each disease into a shared and a disease-specific component. The various components of this formulation are modelled simultaneously by using spatial cluster models implemented via reversible jump Markov chain Monte Carlo methods. We illustrate the methodology through an analysis of oral and oesophageal cancer mortality in the 544 districts of Germany, 1986–1990.  相似文献   

7.
In this study, an evaluation of Bayesian hierarchical models is made based on simulation scenarios to compare single-stage and multi-stage Bayesian estimations. Simulated datasets of lung cancer disease counts for men aged 65 and older across 44 wards in the London Health Authority were analysed using a range of spatially structured random effect components. The goals of this study are to determine which of these single-stage models perform best given a certain simulating model, how estimation methods (single- vs. multi-stage) compare in yielding posterior estimates of fixed effects in the presence of spatially structured random effects, and finally which of two spatial prior models – the Leroux or ICAR model, perform best in a multi-stage context under different assumptions concerning spatial correlation. Among the fitted single-stage models without covariates, we found that when there is low amount of variability in the distribution of disease counts, the BYM model is relatively robust to misspecification in terms of DIC, while the Leroux model is the least robust to misspecification. When these models were fit to data generated from models with covariates, we found that when there was one set of covariates – either spatially correlated or non-spatially correlated, changing the values of the fixed coefficients affected the ability of either the Leroux or ICAR model to fit the data well in terms of DIC. When there were multiple sets of spatially correlated covariates in the simulating model, however, we could not distinguish the goodness of fit to the data between these single-stage models. We found that the multi-stage modelling process via the Leroux and ICAR models generally reduced the variance of the posterior estimated fixed effects for data generated from models with covariates and a UH term compared to analogous single-stage models. Finally, we found the multi-stage Leroux model compares favourably to the multi-stage ICAR model in terms of DIC. We conclude that the mutli-stage Leroux model should be seriously considered in applications of Bayesian disease mapping when an investigator desires to fit a model with both fixed effects and spatially structured random effects to Poisson count data.  相似文献   

8.
Population level risk factors in spatial epidemiology (e.g. socioeconomic deprivation) are often not directly available but indirectly measured through census or other sources. This paper considers multiple health outcomes (e.g. mortality, hospital admissions) in relation to unmeasured latent constructs of population morbidity, established as relevant to explaining spatial contrasts in such health outcomes. The constructs are derived using a factor analytic approach in which observed area social indicators are measures of a smaller set of latent constructs. The constructs are allowed to be spatially correlated as well as correlated with one another. The possibility of nonlinear construct effects is considered using a spline regression. A case study considers suicide mortality and self-harm contrasts in 32 London boroughs, in relation to two latent constructs: area deprivation and social fragmentation.  相似文献   

9.
In studies that produce data with spatial structure, it is common that covariates of interest vary spatially in addition to the error. Because of this, the error and covariate are often correlated. When this occurs, it is difficult to distinguish the covariate effect from residual spatial variation. In an i.i.d. normal error setting, it is well known that this type of correlation produces biased coefficient estimates, but predictions remain unbiased. In a spatial setting, recent studies have shown that coefficient estimates remain biased, but spatial prediction has not been addressed. The purpose of this paper is to provide a more detailed study of coefficient estimation from spatial models when covariate and error are correlated and then begin a formal study regarding spatial prediction. This is carried out by investigating properties of the generalized least squares estimator and the best linear unbiased predictor when a spatial random effect and a covariate are jointly modelled. Under this setup, we demonstrate that the mean squared prediction error is possibly reduced when covariate and error are correlated.  相似文献   

10.
Most regression problems in practice require flexible semiparametric forms of the predictor for modelling the dependence of responses on covariates. Moreover, it is often necessary to add random effects accounting for overdispersion caused by unobserved heterogeneity or for correlation in longitudinal or spatial data. We present a unified approach for Bayesian inference via Markov chain Monte Carlo simulation in generalized additive and semiparametric mixed models. Different types of covariates, such as the usual covariates with fixed effects, metrical covariates with non-linear effects, unstructured random effects, trend and seasonal components in longitudinal data and spatial covariates, are all treated within the same general framework by assigning appropriate Markov random field priors with different forms and degrees of smoothness. We applied the approach in several case-studies and consulting cases, showing that the methods are also computationally feasible in problems with many covariates and large data sets. In this paper, we choose two typical applications.  相似文献   

11.
We propose a mixture modelling framework for both identifying and exploring the nature of genotype-trait associations. This framework extends the classical mixed effects modelling approach for this setting by incorporating a Gaussian mixture distribution for random genotype effects. The primary advantages of this paradigm over existing approaches include that the mixture modelling framework addresses the degrees-of-freedom challenge that is inherent in application of the usual fixed effects analysis of covariance, relaxes the restrictive single normal distribution assumption of the classical mixed effects models and offers an exploratory framework for discovery of underlying structure across multiple genetic loci. An application to data arising from a study of antiretroviral-associated dyslipidaemia in human immunodeficiency virus infection is presented. Extensive simulations studies are also implemented to investigate the performance of this approach.  相似文献   

12.
Summary.  We consider joint spatial modelling of areal multivariate categorical data assuming a multiway contingency table for the variables, modelled by using a log-linear model, and connected across units by using spatial random effects. With no distinction regarding whether variables are response or explanatory, we do not limit inference to conditional probabilities, as in customary spatial logistic regression. With joint probabilities we can calculate arbitrary marginal and conditional probabilities without having to refit models to investigate different hypotheses. Flexible aggregation allows us to investigate subgroups of interest; flexible conditioning enables not only the study of outcomes given risk factors but also retrospective study of risk factors given outcomes. A benefit of joint spatial modelling is the opportunity to reveal disparities in health in a richer fashion, e.g. across space for any particular group of cells, across groups of cells at a particular location, and, hence, potential space–group interaction. We illustrate with an analysis of birth records for the state of North Carolina and compare with spatial logistic regression.  相似文献   

13.
This paper considers estimation of cancer incidence rates for local areas. The raw estimates usually are based on small sample sizes, and hence are usually unreliable. A hierarchical Bayes generalized linear model approach is taken which connects the local areas, thereby enabling one to ‘borrow strength’. Random effects with pairwise difference priors model the spatial structure in the data. The methods are applied to cancer incidence estimation for census tracts in a certain region of the state of New York.  相似文献   

14.
In survey sampling, policy decisions regarding the allocation of resources to sub‐groups of a population depend on reliable predictors of their underlying parameters. However, in some sub‐groups, called small areas due to small sample sizes relative to the population, the information needed for reliable estimation is typically not available. Consequently, data on a coarser scale are used to predict the characteristics of small areas. Mixed models are the primary tools in small area estimation (SAE) and also borrow information from alternative sources (e.g., previous surveys and administrative and census data sets). In many circumstances, small area predictors are associated with location. For instance, in the case of chronic disease or cancer, it is important for policy makers to understand spatial patterns of disease in order to determine small areas with high risk of disease and establish prevention strategies. The literature considering SAE with spatial random effects is sparse and mostly in the context of spatial linear mixed models. In this article, small area models are proposed for the class of spatial generalized linear mixed models to obtain small area predictors and corresponding second‐order unbiased mean squared prediction errors via Taylor expansion and a parametric bootstrap approach. The performance of the proposed approach is evaluated through simulation studies and application of the models to a real esophageal cancer data set from Minnesota, U.S.A. The Canadian Journal of Statistics 47: 426–437; 2019 © 2019 Statistical Society of Canada  相似文献   

15.
With the ready availability of spatial databases and geographical information system software, statisticians are increasingly encountering multivariate modelling settings featuring associations of more than one type: spatial associations between data locations and associations between the variables within the locations. Although flexible modelling of multivariate point-referenced data has recently been addressed by using a linear model of co-regionalization, existing methods for multivariate areal data typically suffer from unnecessary restrictions on the covariance structure or undesirable dependence on the conditioning order of the variables. We propose a class of Bayesian hierarchical models for multivariate areal data that avoids these restrictions, permitting flexible and order-free modelling of correlations both between variables and across areal units. Our framework encompasses a rich class of multivariate conditionally autoregressive models that are computationally feasible via modern Markov chain Monte Carlo methods. We illustrate the strengths of our approach over existing models by using simulation studies and also offer a real data application involving annual lung, larynx and oesophageal cancer death-rates in Minnesota counties between 1990 and 2000.  相似文献   

16.
Bayesian hierarchical modeling with Gaussian process random effects provides a popular approach for analyzing point-referenced spatial data. For large spatial data sets, however, generic posterior sampling is infeasible due to the extremely high computational burden in decomposing the spatial correlation matrix. In this paper, we propose an efficient algorithm—the adaptive griddy Gibbs (AGG) algorithm—to address the computational issues with large spatial data sets. The proposed algorithm dramatically reduces the computational complexity. We show theoretically that the proposed method can approximate the real posterior distribution accurately. The sufficient number of grid points for a required accuracy has also been derived. We compare the performance of AGG with that of the state-of-the-art methods in simulation studies. Finally, we apply AGG to spatially indexed data concerning building energy consumption.  相似文献   

17.
Prostate cancer (PrCA) is the most common cancer diagnosed in American men and the second leading cause of death from malignancies. There are large geographical variation and racial disparities existing in the survival rate of PrCA. Much work on the spatial survival model is based on the proportional hazards (PH) model, but few focused on the accelerated failure time (AFT) model. In this paper, we investigate the PrCA data of Louisiana from the Surveillance, Epidemiology, and End Results program and the violation of the PH assumption suggests that the spatial survival model based on the AFT model is more appropriate for this data set. To account for the possible extra-variation, we consider spatially referenced independent or dependent spatial structures. The deviance information criterion is used to select a best-fitting model within the Bayesian frame work. The results from our study indicate that age, race, stage, and geographical distribution are significant in evaluating PrCA survival.  相似文献   

18.
Researchers familiar with spatial models are aware of the challenge of choosing the level of spatial aggregation. Few studies have been published on the investigation of temporal aggregation and its impact on inferences regarding disease outcome in space–time analyses. We perform a case study for modelling individual disease outcomes using several Bayesian hierarchical spatio‐temporal models, while taking into account the possible impact of spatial and temporal aggregation. Using longitudinal breast cancer data from South East Queensland, Australia, we consider both parametric and non‐parametric formulations for temporal effects at various levels of aggregation. Two temporal smoothness priors are considered separately; each is modelled with fixed effects for the covariates and an intrinsic conditional autoregressive prior for the spatial random effects. Our case study reveals that different model formulations produce considerably different model performances. For this particular dataset, a classical parametric formulation that assumes a linear time trend produces the best fit among the five models considered. Different aggregation levels of temporal random effects were found to have little impact on model goodness‐of‐fit and estimation of fixed effects.  相似文献   

19.
In practice, survival data are often collected over geographical regions. Shared spatial frailty models have been used to model spatial variation in survival times, which are often implemented using the Bayesian Markov chain Monte Carlo method. However, this method comes at the price of slow mixing rates and heavy computational cost, which may render it impractical for data-intensive application. Alternatively, a frailty model assuming an independent and identically distributed (iid) random effect can be easily and efficiently implemented. Therefore, we used simulations to assess the bias and efficiency loss in the estimated parameters, if residual spatial correlation is present but using an iid random effect. Our simulations indicate that a shared frailty model with an iid random effect can estimate the regression coefficients reasonably well, even with residual spatial correlation present, when the percentage of censoring is not too high and the number of clusters and cluster size are not too low. Therefore, if the primary goal is to assess the covariate effects, one may choose the frailty model with an iid random effect; whereas if the goal is to predict the hazard, additional care needs to be given due to the efficiency loss in the parameter(s) for the baseline hazard.  相似文献   

20.
Random effects models have been playing a critical role for modelling longitudinal data. However, there are little studies on the kernel-based maximum likelihood method for semiparametric random effects models. In this paper, based on kernel and likelihood methods, we propose a pooled global maximum likelihood method for the partial linear random effects models. The pooled global maximum likelihood method employs the local approximations of the nonparametric function at a group of grid points simultaneously, instead of one point. Gaussian quadrature is used to approximate the integration of likelihood with respect to random effects. The asymptotic properties of the proposed estimators are rigorously studied. Simulation studies are conducted to demonstrate the performance of the proposed approach. We also apply the proposed method to analyse correlated medical costs in the Medical Expenditure Panel Survey data set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号