首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Caren Hasler  Yves Tillé 《Statistics》2016,50(6):1310-1331
Random imputation is an interesting class of imputation methods to handle item nonresponse because it tends to preserve the distribution of the imputed variable. However, such methods amplify the total variance of the estimators because values are imputed at random. This increase in variance is called imputation variance. In this paper, we propose a new random hot-deck imputation method that is based on the k-nearest neighbour methodology. It replaces the missing value of a unit with the observed value of a similar unit. Calibration and balanced sampling are applied to minimize the imputation variance. Moreover, our proposed method provides triple protection against nonresponse bias. This means that if at least one out of three specified models holds, then the resulting total estimator is unbiased. Finally, our approach allows the user to perform consistency edits and to impute simultaneously.  相似文献   

2.
Analyzing incomplete data for inferring the structure of gene regulatory networks (GRNs) is a challenging task in bioinformatic. Bayesian network can be successfully used in this field. k-nearest neighbor, singular value decomposition (SVD)-based and multiple imputation by chained equations are three fundamental imputation methods to deal with missing values. Path consistency (PC) algorithm based on conditional mutual information (PCA–CMI) is a famous algorithm for inferring GRNs. This algorithm needs the data set to be complete. However, the problem is that PCA–CMI is not a stable algorithm and when applied on permuted gene orders, different networks are obtained. We propose an order independent algorithm, PCA–CMI–OI, for inferring GRNs. After imputation of missing data, the performances of PCA–CMI and PCA–CMI–OI are compared. Results show that networks constructed from data imputed by the SVD-based method and PCA–CMI–OI algorithm outperform other imputation methods and PCA–CMI. An undirected or partially directed network is resulted by PC-based algorithms. Mutual information test (MIT) score, which can deal with discrete data, is one of the famous methods for directing the edges of resulted networks. We also propose a new score, ConMIT, which is appropriate for analyzing continuous data. Results shows that the precision of directing the edges of skeleton is improved by applying the ConMIT score.  相似文献   

3.
This article addresses issues in creating public-use data files in the presence of missing ordinal responses and subsequent statistical analyses of the dataset by users. The authors propose a fully efficient fractional imputation (FI) procedure for ordinal responses with missing observations. The proposed imputation strategy retrieves the missing values through the full conditional distribution of the response given the covariates and results in a single imputed data file that can be analyzed by different data users with different scientific objectives. Two most critical aspects of statistical analyses based on the imputed data set,  validity  and  efficiency, are examined through regression analysis involving the ordinal response and a selected set of covariates. It is shown through both theoretical development and simulation studies that, when the ordinal responses are missing at random, the proposed FI procedure leads to valid and highly efficient inferences as compared to existing methods. Variance estimation using the fractionally imputed data set is also discussed. The Canadian Journal of Statistics 48: 138–151; 2020 © 2019 Statistical Society of Canada  相似文献   

4.
It is cleared in recent researches that the raising of missing values in datasets is inevitable. Imputation of missing data is one of the several methods which have been introduced to overcome this issue. Imputation techniques are trying to answer the case of missing data by covering missing values with reasonable estimates permanently. There are a lot of benefits for these procedures rather than their drawbacks. The operation of these methods has not been clarified, which means that they provide mistrust among analytical results. One approach to evaluate the outcomes of the imputation process is estimating uncertainty in the imputed data. Nonparametric methods are appropriate to estimating the uncertainty when data are not followed by any particular distribution. This paper deals with a nonparametric method for estimation and testing the significance of the imputation uncertainty, which is based on Wilcoxon test statistic, and which could be employed for estimating the precision of the imputed values created by imputation methods. This proposed procedure could be employed to judge the possibility of the imputation process for datasets, and to evaluate the influence of proper imputation methods when they are utilized to the same dataset. This proposed approach has been compared with other nonparametric resampling methods, including bootstrap and jackknife to estimate uncertainty in the imputed data under the Bayesian bootstrap imputation method. The ideas supporting the proposed method are clarified in detail, and a simulation study, which indicates how the approach has been employed in practical situations, is illustrated.  相似文献   

5.
There has been increasing use of quality-of-life (QoL) instruments in drug development. Missing item values often occur in QoL data. A common approach to solve this problem is to impute the missing values before scoring. Several imputation procedures, such as imputing with the most correlated item and imputing with a row/column model or an item response model, have been proposed. We examine these procedures using data from two clinical trials, in which the original asthma quality-of-life questionnaire (AQLQ) and the miniAQLQ were used. We propose two modifications to existing procedures: truncating the imputed values to eliminate outliers and using the proportional odds model as the item response model for imputation. We also propose a novel imputation method based on a semi-parametric beta regression so that the imputed value is always in the correct range and illustrate how this approach can easily be implemented in commonly used statistical software. To compare these approaches, we deleted 5% of item values in the data according to three different missingness mechanisms, imputed them using these approaches and compared the imputed values with the true values. Our comparison showed that the row/column-model-based imputation with truncation generally performed better, whereas our new approach had better performance under a number scenarios.  相似文献   

6.
This study investigated the bias of factor loadings obtained from incomplete questionnaire data with imputed scores. Three models were used to generate discrete ordered rating scale data typical of questionnaires, also known as Likert data. These methods were the multidimensional polytomous latent trait model, a normal ogive item response theory model, and the discretized normal model. Incomplete data due to nonresponse were simulated using either missing completely at random or not missing at random mechanisms. Subsequently, for each incomplete data matrix, four imputation methods were applied for imputing item scores. Based on a completely crossed six-factor design, it was concluded that in general, bias was small for all data simulation methods and all imputation methods, and under all nonresponse mechanisms. Imputation method, two-way-plus-error, had the smallest bias in the factor loadings. Bias based on the discretized normal model was greater than that based on the other two models.  相似文献   

7.
Missing observations due to non‐response are commonly encountered in data collected from sample surveys. The focus of this article is on item non‐response which is often handled by filling in (or imputing) missing values using the observed responses (donors). Random imputation (single or fractional) is used within homogeneous imputation classes that are formed on the basis of categorical auxiliary variables observed on all the sampled units. A uniform response rate within classes is assumed, but that rate is allowed to vary across classes. We construct confidence intervals (CIs) for a population parameter that is defined as the solution to a smooth estimating equation with data collected using stratified simple random sampling. The imputation classes are assumed to be formed across strata. Fractional imputation with a fixed number of random draws is used to obtain an imputed estimating function. An empirical likelihood inference method under the fractional imputation is proposed and its asymptotic properties are derived. Two asymptotically correct bootstrap methods are developed for constructing the desired CIs. In a simulation study, the proposed bootstrap methods are shown to outperform traditional bootstrap methods and some non‐bootstrap competitors under various simulation settings. The Canadian Journal of Statistics 47: 281–301; 2019 © 2019 Statistical Society of Canada  相似文献   

8.
Imputation is commonly used to compensate for missing data in surveys. We consider the general case where the responses on either the variable of interest y or the auxiliary variable x or both may be missing. We use ratio imputation for y when the associated x is observed and different imputations when x is not observed. We obtain design-consistent linearization and jackknife variance estimators under uniform response. We also report the results of a simulation study on the efficiencies of imputed estimators, and relative biases and efficiencies of associated variance estimators.  相似文献   

9.
Zero-inflated models are commonly used for modeling count and continuous data with extra zeros. Inflations at one point or two points apart from zero for modeling continuous data have been discussed less than that of zero inflation. In this article, inflation at an arbitrary point α as a semicontinuous distribution is presented and the mean imputation for a continuous response is discussed as a cause of having semicontinuous data. Also, inflation at two points and generally at k arbitrary points and their relation to cell-mean imputation in the mixture of continuous distributions are studied. To analyze the imputed data, a mixture of semicontinuous distributions is used. The effects of covariates on the dependent variable in a mixture of k semicontinuous distributions with inflation at k points are also investigated. In order to find the parameter estimates, the method of expectation–maximization (EM) algorithm is used. In a real data of Iranian Households Income and Expenditure Survey (IHIES), it is shown how to obtain a proper estimate of the population variance when continuous missing at random responses are mean imputed.  相似文献   

10.
In this paper, we introduce a fresh methodology for imputing missing values by making use of sensible constraints on both a study variable and auxiliary variables that are correlated with the variable of interest. The resultant estimator based on these imputed values is shown to lead to the regression type method of imputation in survey sampling. Furthermore, when the data are hybrid of both that missing at random and missing complexly at random, the resultant estimator is shown to be a consistent estimator that has asymptotic mean squared error equal to that of the linear regression method of imputation. A generalization to any type of method of imputation is possible and has been included at the end.  相似文献   

11.
Missing data methods, maximum likelihood estimation (MLE) and multiple imputation (MI), for longitudinal questionnaire data were investigated via simulation. Predictive mean matching (PMM) was applied at both item and scale levels, logistic regression at item level and multivariate normal imputation at scale level. We investigated a hybrid approach which is combination of MLE and MI, i.e. scales from the imputed data are eliminated if all underlying items were originally missing. Bias and mean square error (MSE) for parameter estimates were examined. ML seemed to provide occasionally the best results in terms of bias, but hardly ever on MSE. All imputation methods at the scale level and logistic regression at item level hardly ever showed the best performance. The hybrid approach is similar or better than its original MI. The PMM-hybrid approach at item level demonstrated the best MSE for most settings and in some cases also the smallest bias.  相似文献   

12.
An imputation procedure is a procedure by which each missing value in a data set is replaced (imputed) by an observed value using a predetermined resampling procedure. The distribution of a statistic computed from a data set consisting of observed and imputed values, called a completed data set, is affecwd by the imputation procedure used. In a Monte Carlo experiment, three imputation procedures are compared with respect to the empirical behavior of the goodness-of- fit chi-square statistic computed from a completed data set. The results show that each imputation procedure affects the distribution of the goodness-of-fit chi-square statistic in 3. different manner. However, when the empirical behavior of the goodness-of-fit chi-square statistic is compared u, its appropriate asymptotic distribution, there are no substantial differences between these imputation procedures.  相似文献   

13.
Although the effect of missing data on regression estimates has received considerable attention, their effect on predictive performance has been neglected. We studied the performance of three missing data strategies—omission of records with missing values, replacement with a mean and imputation based on regression—on the predictive performance of logistic regression (LR), classification tree (CT) and neural network (NN) models in the presence of data missing completely at random (MCAR). Models were constructed using datasets of size 500 simulated from a joint distribution of binary and continuous predictors including nonlinearities, collinearity and interactions between variables. Though omission produced models that fit better on the data from which the models were developed, imputation was superior on average to omission for all models when evaluating the receiver operating characteristic (ROC) curve area, mean squared error (MSE), pooled variance across outcome categories and calibration X 2 on an independently generated test set. However, in about one-third of simulations, omission performed better. Performance was also more variable with omission including quite a few instances of extremely poor performance. Replacement and imputation generally produced similar results except with neural networks for which replacement, the strategy typically used in neural network algorithms, was inferior to imputation. Missing data affected simpler models much less than they did more complex models such as generalized additive models that focus on local structure For moderate sized datasets, logistic regressions that use simple nonlinear structures such as quadratic terms and piecewise linear splines appear to be at least as robust to randomly missing values as neural networks and classification trees.  相似文献   

14.
In this paper we propose a latent class based multiple imputation approach for analyzing missing categorical covariate data in a highly stratified data model. In this approach, we impute the missing data assuming a latent class imputation model and we use likelihood methods to analyze the imputed data. Via extensive simulations, we study its statistical properties and make comparisons with complete case analysis, multiple imputation, saturated log-linear multiple imputation and the Expectation–Maximization approach under seven missing data mechanisms (including missing completely at random, missing at random and not missing at random). These methods are compared with respect to bias, asymptotic standard error, type I error, and 95% coverage probabilities of parameter estimates. Simulations show that, under many missingness scenarios, latent class multiple imputation performs favorably when jointly considering these criteria. A data example from a matched case–control study of the association between multiple myeloma and polymorphisms of the Inter-Leukin 6 genes is considered.  相似文献   

15.
Imputation is often used in surveys to treat item nonresponse. It is well known that treating the imputed values as observed values may lead to substantial underestimation of the variance of the point estimators. To overcome the problem, a number of variance estimation methods have been proposed in the literature, including resampling methods such as the jackknife and the bootstrap. In this paper, we consider the problem of doubly robust inference in the presence of imputed survey data. In the doubly robust literature, point estimation has been the main focus. In this paper, using the reverse framework for variance estimation, we derive doubly robust linearization variance estimators in the case of deterministic and random regression imputation within imputation classes. Also, we study the properties of several jackknife variance estimators under both negligible and nonnegligible sampling fractions. A limited simulation study investigates the performance of various variance estimators in terms of relative bias and relative stability. Finally, the asymptotic normality of imputed estimators is established for stratified multistage designs under both deterministic and random regression imputation. The Canadian Journal of Statistics 40: 259–281; 2012 © 2012 Statistical Society of Canada  相似文献   

16.
Bayesian networks for imputation   总被引:1,自引:0,他引:1  
Summary.  Bayesian networks are particularly useful for dealing with high dimensional statistical problems. They allow a reduction in the complexity of the phenomenon under study by representing joint relationships between a set of variables through conditional relationships between subsets of these variables. Following Thibaudeau and Winkler we use Bayesian networks for imputing missing values. This method is introduced to deal with the problem of the consistency of imputed values: preservation of statistical relationships between variables ( statistical consistency ) and preservation of logical constraints in data ( logical consistency ). We perform some experiments on a subset of anonymous individual records from the 1991 UK population census.  相似文献   

17.
This article examines methods to efficiently estimate the mean response in a linear model with an unknown error distribution under the assumption that the responses are missing at random. We show how the asymptotic variance is affected by the estimator of the regression parameter, and by the imputation method. To estimate the regression parameter, the ordinary least squares is efficient only if the error distribution happens to be normal. If the errors are not normal, then we propose a one step improvement estimator or a maximum empirical likelihood estimator to efficiently estimate the parameter.To investigate the imputation’s impact on the estimation of the mean response, we compare the listwise deletion method and the propensity score method (which do not use imputation at all), and two imputation methods. We demonstrate that listwise deletion and the propensity score method are inefficient. Partial imputation, where only the missing responses are imputed, is compared to full imputation, where both missing and non-missing responses are imputed. Our results reveal that, in general, full imputation is better than partial imputation. However, when the regression parameter is estimated very poorly, the partial imputation will outperform full imputation. The efficient estimator for the mean response is the full imputation estimator that utilizes an efficient estimator of the parameter.  相似文献   

18.
Donor imputation is frequently used in surveys. However, very few variance estimation methods that take into account donor imputation have been developed in the literature. This is particularly true for surveys with high sampling fractions using nearest donor imputation, often called nearest‐neighbour imputation. In this paper, the authors develop a variance estimator for donor imputation based on the assumption that the imputed estimator of a domain total is approximately unbiased under an imputation model; that is, a model for the variable requiring imputation. Their variance estimator is valid, irrespective of the magnitude of the sampling fractions and the complexity of the donor imputation method, provided that the imputation model mean and variance are accurately estimated. They evaluate its performance in a simulation study and show that nonparametric estimation of the model mean and variance via smoothing splines brings robustness with respect to imputation model misspecifications. They also apply their variance estimator to real survey data when nearest‐neighbour imputation has been used to fill in the missing values. The Canadian Journal of Statistics 37: 400–416; 2009 © 2009 Statistical Society of Canada  相似文献   

19.
The multiple imputation technique has proven to be a useful tool in missing data analysis. We propose a Markov chain Monte Carlo method to conduct multiple imputation for incomplete correlated ordinal data using the multivariate probit model. We conduct a thorough simulation study to compare the performance of our proposed method with two available imputation methods – multivariate normal-based and chain equation methods for various missing data scenarios. For illustration, we present an application using the data from the smoking cessation treatment study for low-income community corrections smokers.  相似文献   

20.
Tukey proposed a class of distributions, the g-and-h family (gh family), based on a transformation of a standard normal variable to accommodate different skewness and elongation in the distribution of variables arising in practical applications. It is easy to draw values from this distribution even though it is hard to explicitly state the probability density function. Given this flexibility, the gh family may be extremely useful in creating multiple imputations for missing data. This article demonstrates how this family, as well as its generalizations, can be used in the multiple imputation analysis of incomplete data. The focus of this article is on a scalar variable with missing values. In the absence of any additional information, data are missing completely at random, and hence the correct analysis is the complete-case analysis. Thus, the application of the gh multiple imputation to the scalar cases affords comparison with the correct analysis and with other model-based multiple imputation methods. Comparisons are made using simulated datasets and the data from a survey of adolescents ascertaining driving after drinking alcohol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号