首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Non ignorable missing data is a common problem in longitudinal studies. Latent class models are attractive for simplifying the modeling of missing data when the data are subject to either a monotone or intermittent missing data pattern. In our study, we propose a new two-latent-class model for categorical data with informative dropouts, dividing the observed data into two latent classes; one class in which the outcomes are deterministic and a second one in which the outcomes can be modeled using logistic regression. In the model, the latent classes connect the longitudinal responses and the missingness process under the assumption of conditional independence. Parameters are estimated by the method of maximum likelihood estimation based on the above assumptions and the tetrachoric correlation between responses within the same subject. We compare the proposed method with the shared parameter model and the weighted GEE model using the areas under the ROC curves in the simulations and the application to the smoking cessation data set. The simulation results indicate that the proposed two-latent-class model performs well under different missing procedures. The application results show that our proposed method is better than the shared parameter model and the weighted GEE model.  相似文献   

2.
We propose a new weighting (WT) method to handle missing categorical outcomes in longitudinal data analysis using generalized estimating equations (GEE). The proposed WT provides a valid GEE estimator when the data are missing at random (MAR), and has more stable weights and shows advantage in efficiency compared to the inverse probability weighing method in the presence of small observation probabilities. The WT estimator is similar to the stabilized weighting (SWT) estimator under mild conditions, but it is more stable and efficient than SWT when the associations of the outcome with the observation probabilities and the covariate are strong.  相似文献   

3.
Estimating equations which are not necessarily likelihood-based score equations are becoming increasingly popular for estimating regression model parameters. This paper is concerned with estimation based on general estimating equations when true covariate data are missing for all the study subjects, but surrogate or mismeasured covariates are available instead. The method is motivated by the covariate measurement error problem in marginal or partly conditional regression of longitudinal data. We propose to base estimation on the expectation of the complete data estimating equation conditioned on available data. The regression parameters and other nuisance parameters are estimated simultaneously by solving the resulting estimating equations. The expected estimating equation (EEE) estimator is equal to the maximum likelihood estimator if the complete data scores are likelihood scores and conditioning is with respect to all the available data. A pseudo-EEE estimator, which requires less computation, is also investigated. Asymptotic distribution theory is derived. Small sample simulations are conducted when the error process is an order 1 autoregressive model. Regression calibration is extended to this setting and compared with the EEE approach. We demonstrate the methods on data from a longitudinal study of the relationship between childhood growth and adult obesity.  相似文献   

4.
We propose methods for Bayesian inference for missing covariate data with a novel class of semi-parametric survival models with a cure fraction. We allow the missing covariates to be either categorical or continuous and specify a parametric distribution for the covariates that is written as a sequence of one dimensional conditional distributions. We assume that the missing covariates are missing at random (MAR) throughout. We propose an informative class of joint prior distributions for the regression coefficients and the parameters arising from the covariate distributions. The proposed class of priors are shown to be useful in recovering information on the missing covariates especially in situations where the missing data fraction is large. Properties of the proposed prior and resulting posterior distributions are examined. Also, model checking techniques are proposed for sensitivity analyses and for checking the goodness of fit of a particular model. Specifically, we extend the Conditional Predictive Ordinate (CPO) statistic to assess goodness of fit in the presence of missing covariate data. Computational techniques using the Gibbs sampler are implemented. A real data set involving a melanoma cancer clinical trial is examined to demonstrate the methodology.  相似文献   

5.
The authors develop a Markov model for the analysis of longitudinal categorical data which facilitates modelling both marginal and conditional structures. A likelihood formulation is employed for inference, so the resulting estimators enjoy the optimal properties such as efficiency and consistency, and remain consistent when data are missing at random. Simulation studies demonstrate that the proposed method performs well under a variety of situations. Application to data from a smoking prevention study illustrates the utility of the model and interpretation of covariate effects. The Canadian Journal of Statistics © 2009 Statistical Society of Canada  相似文献   

6.
The multiple imputation technique has proven to be a useful tool in missing data analysis. We propose a Markov chain Monte Carlo method to conduct multiple imputation for incomplete correlated ordinal data using the multivariate probit model. We conduct a thorough simulation study to compare the performance of our proposed method with two available imputation methods – multivariate normal-based and chain equation methods for various missing data scenarios. For illustration, we present an application using the data from the smoking cessation treatment study for low-income community corrections smokers.  相似文献   

7.
We propose a method for estimating parameters in generalized linear models when the outcome variable is missing for some subjects and the missing data mechanism is non-ignorable. We assume throughout that the covariates are fully observed. One possible method for estimating the parameters is maximum likelihood with a non-ignorable missing data model. However, caution must be used when fitting non-ignorable missing data models because certain parameters may be inestimable for some models. Instead of fitting a non-ignorable model, we propose the use of auxiliary information in a likelihood approach to reduce the bias, without having to specify a non-ignorable model. The method is applied to a mental health study.  相似文献   

8.
Models that involve an outcome variable, covariates, and latent variables are frequently the target for estimation and inference. The presence of missing covariate or outcome data presents a challenge, particularly when missingness depends on the latent variables. This missingness mechanism is called latent ignorable or latent missing at random and is a generalisation of missing at random. Several authors have previously proposed approaches for handling latent ignorable missingness, but these methods rely on prior specification of the joint distribution for the complete data. In practice, specifying the joint distribution can be difficult and/or restrictive. We develop a novel sequential imputation procedure for imputing covariate and outcome data for models with latent variables under latent ignorable missingness. The proposed method does not require a joint model; rather, we use results under a joint model to inform imputation with less restrictive modelling assumptions. We discuss identifiability and convergence‐related issues, and simulation results are presented in several modelling settings. The method is motivated and illustrated by a study of head and neck cancer recurrence. Imputing missing data for models with latent variables under latent‐dependent missingness without specifying a full joint model.  相似文献   

9.
Asthma is an important chronic disease of childhood. An intervention programme for managing asthma was designed on principles of self-regulation and was evaluated by a randomized longitudinal study.The study focused on several outcomes, and, typically, missing data remained a pervasive problem. We develop a pattern-mixture model to evaluate the outcome of intervention on the number of hospitalizations with non-ignorable dropouts. Pattern-mixture models are not generally identifiable as no data may be available to estimate a number of model parameters. Sensitivity analyses are performed by imposing structures on the unidentified parameters.We propose a parameterization which permits sensitivity analyses on clustered longitudinal count data that have missing values due to non-ignorable missing data mechanisms. This parameterization is expressed as ratios between event rates across missing data patterns and the observed data pattern and thus measures departures from an ignorable missing data mechanism. Sensitivity analyses are performed within a Bayesian framework by averaging over different prior distributions on the event ratios. This model has the advantage of providing an intuitive and flexible framework for incorporating the uncertainty of the missing data mechanism in the final analysis.  相似文献   

10.
We propose a method for estimating parameters in generalized linear models with missing covariates and a non-ignorable missing data mechanism. We use a multinomial model for the missing data indicators and propose a joint distribution for them which can be written as a sequence of one-dimensional conditional distributions, with each one-dimensional conditional distribution consisting of a logistic regression. We allow the covariates to be either categorical or continuous. The joint covariate distribution is also modelled via a sequence of one-dimensional conditional distributions, and the response variable is assumed to be completely observed. We derive the E- and M-steps of the EM algorithm with non-ignorable missing covariate data. For categorical covariates, we derive a closed form expression for the E- and M-steps of the EM algorithm for obtaining the maximum likelihood estimates (MLEs). For continuous covariates, we use a Monte Carlo version of the EM algorithm to obtain the MLEs via the Gibbs sampler. Computational techniques for Gibbs sampling are proposed and implemented. The parametric form of the assumed missing data mechanism itself is not `testable' from the data, and thus the non-ignorable modelling considered here can be viewed as a sensitivity analysis concerning a more complicated model. Therefore, although a model may have `passed' the tests for a certain missing data mechanism, this does not mean that we have captured, even approximately, the correct missing data mechanism. Hence, model checking for the missing data mechanism and sensitivity analyses play an important role in this problem and are discussed in detail. Several simulations are given to demonstrate the methodology. In addition, a real data set from a melanoma cancer clinical trial is presented to illustrate the methods proposed.  相似文献   

11.
Intervention trials such as studies on smoking cessation may observe multiple, discrete outcomes over time. When the outcome is binary, participant observations may alternate between two states over the course of the study. The generalized estimating equation (GEE) approach is commonly used to analyze binary, longitudinal data in the context of independent variables. However, the sequence of observations may be assumed to follow a Markov chain with stationary transition probabilities when observations are made at fixed time points. Participants favoring the transition to one particular state over the other would be evidence of a trend in the observations. Using a log-transformed trend parameter, the determinants of a trend in a binary, longitudinal study may be evaluated by maximizing the likelihood function. A new methodology is presented here to test for the presence and determinants of a trend in binary, longitudinal observations. Empirical studies are evaluated and comparisons are made with the GEE approach. Practical application of the proposed method is made to the data available from an intervention study on smoking cessation.  相似文献   

12.
We propose a profile conditional likelihood approach to handle missing covariates in the general semiparametric transformation regression model. The method estimates the marginal survival function by the Kaplan-Meier estimator, and then estimates the parameters of the survival model and the covariate distribution from a conditional likelihood, substituting the Kaplan-Meier estimator for the marginal survival function in the conditional likelihood. This method is simpler than full maximum likelihood approaches, and yields consistent and asymptotically normally distributed estimator of the regression parameter when censoring is independent of the covariates. The estimator demonstrates very high relative efficiency in simulations. When compared with complete-case analysis, the proposed estimator can be more efficient when the missing data are missing completely at random and can correct bias when the missing data are missing at random. The potential application of the proposed method to the generalized probit model with missing continuous covariates is also outlined.  相似文献   

13.
We propose a joint model based on a latent variable for analyzing mixed power series and ordinal longitudinal data with and without missing values. A bivariate probit regression model is used for the missing mechanisms. Random effects are used to take into account the correlation between longitudinal responses. A full likelihood-based approach is used to yield maximum-likelihood estimates of the model parameters. Our model is applied to a medical data set, obtained from an observational study on women where the correlated responses are the ordinal response of osteoporosis of the spine and the power series response of the number of joint damages. Sensitivity analysis is also performed to study the influence of small perturbations of the parameters of the missing mechanisms and overdispersion of the model on likelihood displacement.  相似文献   

14.
Abstract

Continuous-time multi-state models are commonly used to study diseases with multiple stages. Potential risk factors associated with the disease are added to the transition intensities of the model as covariates, but missing covariate measurements arise frequently in practice. We propose a likelihood-based method that deals efficiently with a missing covariate in these models. Our simulation study showed that the method performs well for both “missing completely at random” and “missing at random” mechanisms. We also applied our method to a real dataset, the Einstein Aging Study.  相似文献   

15.
A common occurrence in clinical trials with a survival end point is missing covariate data. With ignorably missing covariate data, Lipsitz and Ibrahim proposed a set of estimating equations to estimate the parameters of Cox's proportional hazards model. They proposed to obtain parameter estimates via a Monte Carlo EM algorithm. We extend those results to non-ignorably missing covariate data. We present a clinical trials example with three partially observed laboratory markers which are used as covariates to predict survival.  相似文献   

16.
 在纵向数据研究中,混合效应模型的随机误差通常采用正态性假设。而诸如病毒载量和CD4细胞数目等病毒性数据通常呈现偏斜性,因此正态性假设可能影响模型结果甚至导致错误的结论。在HIV动力学研究中,病毒响应值往往与协变量相关,且协变量的测量值通常存在误差,为此论文中联立协变量过程建立具有偏正态分布的非线性混合效应联合模型,并用贝叶斯推断方法估计模型的参数。由于协变量能够解释个体内的部分变化,因此协变量过程的模型选择对病毒载量的拟合效果有重要的影响。该文提出了一次移动平均模型作为协变量过程的改进模型,比较后发现当协变量采用移动平均模型时,病毒载量模型的拟合效果更好。该结果对协变量模型的研究具有重要的指导意义。  相似文献   

17.
Random coefficient model (RCM) is a powerful statistical tool in analyzing correlated data collected from studies with different clusters or from longitudinal studies. In practice, there is a need for statistical methods that allow biomedical researchers to adjust for the measured and unmeasured covariates that might affect the regression model. This article studies two nonparametric methods dealing with auxiliary covariate data in linear random coefficient models. We demonstrate how to estimate the coefficients of the models and how to predict the random effects when the covariates are missing or mismeasured. We employ empirical estimator and kernel smoother to handle a discrete and continuous auxiliary, respectively. Simulation results show that the proposed methods perform better than an alternative method that only uses data in the validation data set and ignores the random effects in the random coefficient model.  相似文献   

18.
We consider statistical inference of unknown parameters in estimating equations (EEs) when some covariates have nonignorably missing values, which is quite common in practice but has rarely been discussed in the literature. When an instrument, a fully observed covariate vector that helps identifying parameters under nonignorable missingness, is available, the conditional distribution of the missing covariates given other covariates can be estimated by the pseudolikelihood method of Zhao and Shao [(2015), ‘Semiparametric pseudo likelihoods in generalised linear models with nonignorable missing data’, Journal of the American Statistical Association, 110, 1577–1590)] and be used to construct unbiased EEs. These modified EEs then constitute a basis for valid inference by empirical likelihood. Our method is applicable to a wide range of EEs used in practice. It is semiparametric since no parametric model for the propensity of missing covariate data is assumed. Asymptotic properties of the proposed estimator and the empirical likelihood ratio test statistic are derived. Some simulation results and a real data analysis are presented for illustration.  相似文献   

19.
Summary.  In longitudinal studies missing data are the rule not the exception. We consider the analysis of longitudinal binary data with non-monotone missingness that is thought to be non-ignorable. In this setting a full likelihood approach is complicated algebraically and can be computationally prohibitive when there are many measurement occasions. We propose a 'protective' estimator that assumes that the probability that a response is missing at any occasion depends, in a completely unspecified way, on the value of that variable alone. Relying on this 'protectiveness' assumption, we describe a pseudolikelihood estimator of the regression parameters under non-ignorable missingness, without having to model the missing data mechanism directly. The method proposed is applied to CD4 cell count data from two longitudinal clinical trials of patients infected with the human immunodeficiency virus.  相似文献   

20.
Missing covariates data with censored outcomes put a challenge in the analysis of clinical data especially in small sample settings. Multiple imputation (MI) techniques are popularly used to impute missing covariates and the data are then analyzed through methods that can handle censoring. However, techniques based on MI are available to impute censored data also but they are not much in practice. In the present study, we applied a method based on multiple imputation by chained equations to impute missing values of covariates and also to impute censored outcomes using restricted survival time in small sample settings. The complete data were then analyzed using linear regression models. Simulation studies and a real example of CHD data show that the present method produced better estimates and lower standard errors when applied on the data having missing covariate values and censored outcomes than the analysis of the data having censored outcome but excluding cases with missing covariates or the analysis when cases with missing covariate values and censored outcomes were excluded from the data (complete case analysis).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号