首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, statistical inferences for the size-biased Weibull distribution in two different cases are drawn. In the first case where the size r of the bias is considered known, it is proven that the maximum-likelihood estimators (MLEs) always exist. In the second case where the size r is considered as an unknown parameter, the estimating equations for the MLEs are presented and the Fisher information matrix is found. The estimation with the method of moments can be utilized in the case the MLEs do not exist. The advantage of treating r as an unknown parameter is that it allows us to perform tests concerning the existence of size-bias in the sample. Finally a program in Mathematica is written which provides all the statistical results from the procedures developed in this paper.  相似文献   

2.
In this paper, we consider the Bayesian inference of the unknown parameters of the randomly censored Weibull distribution. A joint conjugate prior on the model parameters does not exist; we assume that the parameters have independent gamma priors. Since closed-form expressions for the Bayes estimators cannot be obtained, we use Lindley's approximation, importance sampling and Gibbs sampling techniques to obtain the approximate Bayes estimates and the corresponding credible intervals. A simulation study is performed to observe the behaviour of the proposed estimators. A real data analysis is presented for illustrative purposes.  相似文献   

3.
4.
A large number of models have been derived from the two-parameter Weibull distribution including the inverse Weibull (IW) model which is found suitable for modeling the complex failure data set. In this paper, we present the Bayesian inference for the mixture of two IW models. For this purpose, the Bayes estimates of the parameters of the mixture model along with their posterior risks using informative as well as the non-informative prior are obtained. These estimates have been attained considering two cases: (a) when the shape parameter is known and (b) when all parameters are unknown. For the former case, Bayes estimates are obtained under three loss functions while for the latter case only the squared error loss function is used. Simulation study is carried out in order to explore numerical aspects of the proposed Bayes estimators. A real-life data set is also presented for both cases, and parameters obtained under case when shape parameter is known are tested through testing of hypothesis procedure.  相似文献   

5.
ABSTRACT

In this paper two probability distributions are analyzed which are formed by compounding inverse Weibull with zero-truncated Poisson and geometric distributions. The distributions can be used to model lifetime of series system where the lifetimes follow inverse Weibull distribution and the subgroup size being random follows either geometric or zero-truncated Poisson distribution. Some of the important statistical and reliability properties of each of the distributions are derived. The distributions are found to exhibit both monotone and non-monotone failure rates. The parameters of the distributions are estimated using the expectation-maximization algorithm and the method of minimum distance estimation. The potentials of the distributions are explored through three real life data sets and are compared with similar compounded distributions, viz. Weibull-geometric, Weibull-Poisson, exponential-geometric and exponential-Poisson distributions.  相似文献   

6.
Summary In this paper, we provide some pivotal quantities to test and establish confidence interval of the shape parameter on the basis of the firstn observed upper record values. Finally, we give some examples and the Monte Carlo simulation to assess the behaviors (including higher power and more shorter length of confidence interval) of these pivotal quantities for testing null hypotheses and establishing confidence interval concerning the shape parameter under the given significance level and the given confidence coefficient, respectively.  相似文献   

7.
This paper describes the Bayesian inference and prediction of the two-parameter Weibull distribution when the data are Type-II censored data. The aim of this paper is twofold. First we consider the Bayesian inference of the unknown parameters under different loss functions. The Bayes estimates cannot be obtained in closed form. We use Gibbs sampling procedure to draw Markov Chain Monte Carlo (MCMC) samples and it has been used to compute the Bayes estimates and also to construct symmetric credible intervals. Further we consider the Bayes prediction of the future order statistics based on the observed sample. We consider the posterior predictive density of the future observations and also construct a predictive interval with a given coverage probability. Monte Carlo simulations are performed to compare different methods and one data analysis is performed for illustration purposes.  相似文献   

8.
9.
Type-I censored reliability acceptance sampling plans (RASPs) are developed for the Weibull lifetime distribution with unknown shape and scale parameters such that the producer and consumer risks are satisfied. It is assumed that the life test is conducted at an accelerated condition for which the acceleration factor (AF) is known, and each item is continuously monitored for failure. Sensitivity analyses are also conducted to assess the effect of the uncertainty in the assumed AF on the actual producer and consumer risks, and a method is developed for constructing RASPs that can accommodate the uncertainty in AF.  相似文献   

10.
Trimmed samples are commonly used in several branches of statistical methodology, especially when the presence of contaminated data is suspected. Assuming that certain proportions of the smallest and largest observations from a Weibull sample are unknown or have been eliminated, a Bayesian approach to point and interval estimation of the scale parameter, as well as hypothesis testing and prediction, is presented. In many cases, the use of substantial prior information can significantly increase the quality of the inferences and reduce the amount of testing required. Some Bayes estimators and predictors are derived in closed-forms. Highest posterior density estimators and credibility intervals can be computed using iterative methods. Bayes rules for testing one- and two-sided hypotheses are also provided. An illustrative numerical example is included.  相似文献   

11.
12.
In this article, we investigate the potential usefulness of the three-parameter transmuted Weibull distribution for modeling survival data. The main advantage of this distribution is that it has increasing, decreasing or constant instantaneous failure rate depending on the shape parameter and the new transmuting parameter. We obtain several mathematical properties of the transmuted Weibull distribution such as the expressions for the quantile function, moments, geometric mean, harmonic mean, Shannon, Rényi and q-entropies, mean deviations, Bonferroni and Lorenz curves, and the moments of order statistics. We propose a location-scale regression model based on the log-transmuted Weibull distribution for modeling lifetime data. Applications to two real datasets are given to illustrate the flexibility and potentiality of the transmuted Weibull family of lifetime distributions.  相似文献   

13.
This article considers the problem of estimating the parameters of Weibull distribution under progressive Type-I interval censoring scheme with beta-binomial removals. Classical as well as the Bayesian procedures for the estimation of unknown model parameters have been developed. The Bayes estimators are obtained under SELF and GELF using MCMC technique. The performance of the estimators, has been discussed in terms of their MSEs. Further, expression for the expected number of total failures has been obtained. A real dataset of the survival times for patients with plasma cell myeloma is used to illustrate the suitability of the proposed methodology.  相似文献   

14.
This paper presents reliability sampling plans for the Weibull distribution under Type II progressive censoring with random removals (PCR), where the number of units removed at each failure time follows a binomial distribution. To construct the sampling plans, the sample size n and the acceptance constant k are determined based on asymptotic distribution theory. The resulting sampling plans are tabulated for selected specifications under the proposed censoring scheme. Furthermore, a Monte Carlo simulation is conducted to validate the true probability of acceptance for the designed sampling plans.  相似文献   

15.
This paper studies the two-parameter, left-truncated Weibull distribution (LTWD) with known, fixed, positive truncation pointT. Important hitherto unknown statistical properties of the LTWD are derived. The asymptotic theory of the maximum likelihood estimates (MLEs) is invoked to develop parameter confidence intervals and regions. Numerical methods are described for computing the MLEs and for evaluating the exact, asymptotic variances and covariances of the MLEs. An illustrative example is given.  相似文献   

16.
We obtain adjustments to the profile likelihood function in Weibull regression models with and without censoring. Specifically, we consider two different modified profile likelihoods: (i) the one proposed by Cox and Reid [Cox, D.R. and Reid, N., 1987, Parameter orthogonality and approximate conditional inference. Journal of the Royal Statistical Society B, 49, 1–39.], and (ii) an approximation to the one proposed by Barndorff–Nielsen [Barndorff–Nielsen, O.E., 1983, On a formula for the distribution of the maximum likelihood estimator. Biometrika, 70, 343–365.], the approximation having been obtained using the results by Fraser and Reid [Fraser, D.A.S. and Reid, N., 1995, Ancillaries and third-order significance. Utilitas Mathematica, 47, 33–53.] and by Fraser et al. [Fraser, D.A.S., Reid, N. and Wu, J., 1999, A simple formula for tail probabilities for frequentist and Bayesian inference. Biometrika, 86, 655–661.]. We focus on point estimation and likelihood ratio tests on the shape parameter in the class of Weibull regression models. We derive some distributional properties of the different maximum likelihood estimators and likelihood ratio tests. The numerical evidence presented in the paper favors the approximation to Barndorff–Nielsen's adjustment.  相似文献   

17.
In this paper, a new lifetime distribution is defined and studied. We refer to the new distribution as alpha power Weibull distribution. The importance of the new distribution comes from its ability to model monotone and non monotone failure rate functions, which are quite common in reliability studies. Various properties of the proposed distribution are obtained including moments, quantiles, entropy, order statistics, mean residual life function, and stress-strength parameter. The maximum likelihood estimation method is used to estimate the parameters. Two real data sets are used to illustrate the importance of the proposed distribution.  相似文献   

18.
There are several failure modes may cause system failed in reliability and survival analysis. It is usually assumed that the causes of failure modes are independent each other, though this assumption does not always hold. Dependent competing risks modes from Marshall-Olkin bivariate Weibull distribution under Type-I progressive interval censoring scheme are considered in this paper. We derive the maximum likelihood function, the maximum likelihood estimates, the 95% Bootstrap confidence intervals and the 95% coverage percentages of the parameters when shape parameter is known, and EM algorithm is applied when shape parameter is unknown. The Monte-Carlo simulation is given to illustrate the theoretical analysis and the effects of parameters estimates under different sample sizes. Finally, a data set has been analyzed for illustrative purposes.  相似文献   

19.
A review is given of the exponentiated Weibull distribution, the first generalization of the two-parameter Weibull distribution to accommodate nonmonotone hazard rates. The properties reviewed include: moments, order statistics, characterizations, generalizations and related distributions, transformations, graphical estimation, maximum likelihood estimation, Bayes estimation, other estimation, discrimination, goodness of fit tests, regression models, applications, multivariate generalizations, and computer software. Some of the results given are new and hitherto unknown. It is hoped that this review could serve as an important reference and encourage developments of further generalizations of the two-parameter Weibull distribution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号