首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study proposes a synthetic double sampling s chart that integrates the double sampling (DS) s chart and the conforming run length chart. An optimization procedure is proposed to compute the optimal parameters of the synthetic DS s chart. The performance of the synthetic DS s chart is compared with other existing control charts for monitoring process standard deviation. The results show that the synthetic DS s chart is more effective for detecting increases in the process standard deviation for a wide range of shifts. An example is provided to illustrate the operation procedure of the synthetic DS s chart.  相似文献   

2.
The Shewhart s chart has been widely used to monitor the standard deviation of a process. However, the main disadvantage of an s chart is its slowness to signal small increases in the variability. In this paper, ideas of adaptive control charts are extended to the Shewhart s chart for improving the efficiency in signalling increases in the standard deviation. A Markov chain model is applied to evaluate its performances and compares its performances with combined double sampling and variable sampling intervals s chart, variable parameters (VP) R chart, exponentially weighted moving average and Cusum charts. The statistical performances show that the VP s chart is more sensitive to increases in standard deviation.  相似文献   

3.
R, s and s2 charts with estimated control limits are widely used in practice. Common practice in control-chart theory is to estimate the control limits using data from the process and, once the process is determined to be in control, to treat the resulting control limits as though fixed. While there are empirical rules for setting up the control charts using past or trial data, little is known about the run length distributions of these charts when the fact that control limits are estimated is taken into account. In this paper, we derive and evaluate the run length distributions associated with the R, s and s2 charts when the process standard deviation a is estimated. The results are then used to discuss the appropriateness of the widely followed empirical rules for choosing the number m of samples and the sample size n.  相似文献   

4.
The study proposes a Shewhart-type control chart, namely an MD chart, based on average absolute deviations taken from the median, for monitoring changes (especially moderate and large changes – a major concern of Shewhart control charts) in process dispersion assuming normality of the quality characteristic to be monitored. The design structure of the proposed MD chart is developed and its comparison is made with those of two well-known dispersion control charts, namely the R and S charts. Using power curves as a performance measure, it has been observed that the design structure of the proposed MD chart is more powerful than that of the R chart and is very close competitor to that of the S chart, in terms of discriminatory power for detecting shifts in the process dispersion. The non-normality effect is also examined on design structures of the three charts, and it has been observed that the design structure of the proposed MD chart is least affected by departure from normality.  相似文献   

5.
ABSTRACT

Profile monitoring is one of the new research areas in statistical process control. Most of the control charts in this area are designed with fixed sampling rate which makes the control chart slow in detecting small to moderate shifts. In order to improve the performance of the conventional fixed control charts, adaptive features are proposed in which, one or more design parameters vary during the process. In this paper the variable sample size feature of EWMA3 and MEWMA schemes are proposed for monitoring simple linear profiles. The EWMA3 method is based on the combination of three exponentially weighted moving average (EWMA) charts for monitoring three parameters of a simple linear profile separately and the Multivariate EWMA (MEWMA) chart is based on the using a single chart to monitor the coefficients and variance of a general linear profile. Also a two-sided control chart is proposed for monitoring the standard deviation in the EWMA3 method. The performance of the proposed charts is compared in terms of the average time to signal. Numerical examples show that using adaptive features increase the power of control charts in detecting the parameter shifts. Finally, the performance of the proposed variable sample size schemes is illustrated through a real case in the leather industry.  相似文献   

6.
ABSTRACT

Control charts are the frequently used tools for monitoring and controlling the processes. Classical control charts are sensitive to existing contaminated data which may be presented in the data collected from the processes. Thus, these charts are not able to control the processes precisely when the data are contaminated. Robust control charts are those which are less sensitive to contamination. Some robust control charts for monitoring the process variability were proposed in the past which are robust to some sorts of contamination. In this paper a new robust R control chart is proposed which is less sensitive to wide range of contaminations, i.e. general and local contaminations. Simulation studies are performed to compare the performance of the proposed control chart with some classical and robust control charts, using ARL and MSD as criteria for comparisons purposes. The simulation results show a very good performance of the proposed chart when both types of contaminations exist.  相似文献   

7.
This study extends the generally weighted moving average (GWMA) control chart by imitating the double exponentially weighted moving average (DEWMA) technique. The proposed chart is called the double generally weighted moving average (DGWMA) control chart. Simulation is employed to evaluate the average run length characteristics of the GWMA, DEWMA and DGWMA control charts. An extensive comparison of these control charts reveals that the DGWMA control chart with time-varying control limits is more sensitive than the GWMA and the DEWMA control charts for detecting medium shifts in the mean of a process when the shifts are between 0.5 and 1.5 standard deviations. Additionally, the GWMA control chart performs better when the mean shifts are below the 0.5 standard deviation, and the DEWMA control performs better when the mean shifts are above the 1.5 standard deviation. The design of the DGWMA control chart is also discussed.  相似文献   

8.
The combined EWMA-X chart is a commonly used tool for monitoring both large and small process shifts. However, this chart requires calculating and monitoring two statistics along with two sets of control limits. Thus, this study develops a single-featured EWMA-X (called SFEWMA-X) control chart which has the ability to simultaneously monitor both large and small process shifts using only one set of statistic and control limits. The proposed SFEWMA-X chart is further extended to monitoring the shifts in process standard deviation. A set of simulated data are used to demonstrate the proposed chart's superior performance in terms of average run length compared with that of the traditional charts. The experimental examples also show that the SFEWMA-X chart is neater and easier to visually interpret than the original EWMA-X chart.  相似文献   

9.
This study addresses the appropriate d 3 values for constructing range control charts (R-charts) when the distributions of the processes are the uniform, triangular, exponential, and Erlang. Comparisons of the range charts are based on Type I error probabilities obtained using simulations. The results reveal that inappropriate use of the d 3 values strongly affected the performance of the R-charts. Practitioners should be more careful in selecting suitable coefficients when using R-charts methods to process data. The distribution of the processes must be examined before the coefficients are chosen.  相似文献   

10.
The exponentially weighted moving average (EWMA) chart is often designed assuming the process parameters are known. In practice, the parameters are rarely known and need to be estimated from Phase I samples. Different Phase I samples are used when practitioners construct their own control chart's limits, which leads to the “Phase I between-practitioners” variability in the in-control average run length (ARL) of control charts. The standard deviation of the ARL (SDARL) is a good alternative to quantify this variability in control charts. Based on the SDARL metric, the performance of the EWMA median chart with estimated parameters is investigated in this paper. Some recommendations are given based on the SDARL metric. The results show that the EWMA median chart requires a much larger amount of Phase I data in order to reduce the variation in the in-control ARL up to a reasonable level. Due to the limitation of the amount of the Phase I data, the suggested EWMA median chart is designed with the bootstrap method which provides a good balance between the in-control and out-of-control ARL values.  相似文献   

11.
This article proposes a multivariate synthetic control chart for skewed populations based on the weighted standard deviation method. The proposed chart incorporates the weighted standard deviation method into the standard multivariate synthetic control chart. The standard multivariate synthetic chart consists of the Hotelling's T 2 chart and the conforming run length chart. The weighted standard deviation method adjusts the variance–covariance matrix of the quality characteristics and approximates the probability density function using several multivariate normal distributions. The proposed chart reduces to the standard multivariate synthetic chart when the underlying distribution is symmetric. In general, the simulation results show that the proposed chart performs better than the existing multivariate charts for skewed populations and the standard T 2 chart, in terms of false alarm rates as well as moderate and large mean shift detection rates based on the various degrees of skewnesses.  相似文献   

12.
A synthetic mean square error (MSE) control chart is presented in this study for monitoring the changes in the mean and standard deviation of a normally distributed process. The synthetic MSE control chart is a combination of the standard MSE control chart and the conforming run length (CRL) control chart. From the numerical comparisons, the synthetic MSE control chart is always more efficient than the standard MSE control chart in detecting shifts in the process mean and standard deviation. The synthetic MSE chart also performs better than the exponentially weighted moving average-semicircle (EWMA-SC) chart, except for some cases where the process mean shifts are small.  相似文献   

13.
Traditional control charts assume independence of observations obtained from the monitored process. However, if the observations are autocorrelated, these charts often do not perform as intended by the design requirements. Recently, several control charts have been proposed to deal with autocorrelated observations. The residual chart, modified Shewhart chart, EWMAST chart, and ARMA chart are such charts widely used for monitoring the occurrence of assignable causes in a process when the process exhibits inherent autocorrelation. Besides autocorrelation, one other issue is the unknown values of true process parameters to be used in the control chart design, which are often estimated from a reference sample of in-control observations. Performances of the above-mentioned control charts for autocorrelated processes are significantly affected by the sample size used in a Phase I study to estimate the control chart parameters. In this study, we investigate the effect of Phase I sample size on the run length performance of these four charts for monitoring the changes in the mean of an autocorrelated process, namely an AR(1) process. A discussion of the practical implications of the results and suggestions on the sample size requirements for effective process monitoring are provided.  相似文献   

14.
Recently, some researchers suggested using a single chart to monitor both location and scale parameters for a process simultaneously, in order to resolve some difficulties in control chart interpretation arising from the traditional approach. This study focuses on the Maximum Exponentially Weighted Moving Average and Mean Squared deviation (MAX EWMAMS) control chart in the presence of measurement error. An important issue in using this chart is that measurement error adversely affects the performance of the chart. In this study, we investigate the effects of measurement error on the performance of the MAX EWMAMS chart by calculating and comparing the average time to signal (ATS) associated with both the in-control and out-of-control states.  相似文献   

15.
16.
ABSTRACT

Control charts are effective tools for signal detection in both manufacturing processes and service processes. Much service data come from a process with variables having non-normal or unknown distributions. The commonly used Shewhart variable control charts, which depend heavily on the normality assumption, should not be properly used in such circumstances. In this paper, we propose a new variance chart based on a simple statistic to monitor process variance shifts. We explore the sampling properties of the new monitoring statistic and calculate the average run lengths (ARLs) of the proposed variance chart. Furthermore, an arcsine transformed exponentially weighted moving average (EWMA) chart is proposed because the ARLs of this modified chart are more intuitive and reasonable than those of the variance chart. We compare the out-of-control variance detection performance of the proposed variance chart with that of the non-parametric Mood variance (NP-M) chart with runs rules, developed by Zombade and Ghute [Nonparametric control chart for variability using runs rules. Experiment. 2014;24(4):1683–1691], and the nonparametric likelihood ratio-based distribution-free exponential weighted moving average (NLE) chart and the combination of traditional exponential weighted moving average (EWMA) mean and EWMA variance (CEW) control chart proposed by Zou and Tsung [Likelihood ratio-based distribution-free EWMA control charts. J Qual Technol. 2010;42(2):174–196] by considering cases in which the critical quality characteristic has a normal, a double exponential or a uniform distribution. Comparison results showed that the proposed chart performs better than the NP-M with runs rules, and the NLE and CEW control charts. A numerical example of service times with a right-skewed distribution from a service system of a bank branch in Taiwan is used to illustrate the application of the proposed variance chart and of the arcsine transformed EWMA chart and to compare them with three existing variance (or standard deviation) charts. The proposed charts show better detection performance than those three existing variance charts in monitoring and detecting shifts in the process variance.  相似文献   

17.
This article develops combined exponentially weighted moving average (EWMA) charts for the mean and variance of a normal distribution. A Bayesian approach is used to incorporate parameter uncertainty. We first use a Bayesian predictive distribution to construct the control chart, and we then use a sampling theory approach to evaluate it under various hypothetical specifications for the data generation model. Simulations are used to compare the proposed charts for different values of both the weighing constant for the exponentially weighted moving averages and for the size of the calibration sample that is used to estimate the in-statistical-control process parameters. We also examine the separate performance of the EWMA chart for the variance.  相似文献   

18.
Control charts are one of the most important methods in industrial process control. The acceptance control chart is generally applied in situations when an X¯ chart is used to control the fraction of conforming units produced by the process and where 6-sigma spread of the process is smaller than the spread in the specification limits. Traditionally, when designing control charts, one usually assumes that the data or measurements are normally distributed. However, this assumption may not be true in some processes. In this paper, we use the Burr distribution, which is employed to represent various non-normal distributions, to determine the appropriate control limits or sample size for the acceptance control chart under non-normality. Some numerical examples are given for illustration. From the presented examples, ignoring the effect of non-normality in the data leads to a higher type I or type II error probability.  相似文献   

19.
To increase the sensitivity of Shewhart control charts in detecting small process shifts sensitizing rules based on runs and scans are often used in practice. Shewhart control charts supplemented with runs rules for detecting shifts in process variance have not received as much attention as their counterparts for detecting shifts in process mean. In this article, we examine the performance of simple runs rules schemes for monitoring increases and/or decreases in process variance based on the sample standard deviation. We introduce one-sided S charts that overcome the weakness of high false-alarm rates when runs rules are added to a Shewhart control chart. The average run length performance and design aspects of the charts are studied thoroughly. The performance of associated two-sided control schemes is investigated as well.  相似文献   

20.
The exponentially weighted moving average (EWMA) control charts with variable sampling intervals (VSIs) have been shown to be substantially quicker than the fixed sampling intervals (FSI) EWMA control charts in detecting process mean shifts. The usual assumption for designing a control chart is that the data or measurements are normally distributed. However, this assumption may not be true for some processes. In the present paper, the performances of the EWMA and combined –EWMA control charts with VSIs are evaluated under non-normality. It is shown that adding the VSI feature to the EWMA control charts results in very substantial decreases in the expected time to detect shifts in process mean under both normality and non-normality. However, the combined –EWMA chart has its false alarm rate and its detection ability is affected if the process data are not normally distributed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号