首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we study the asymptotic properties of the adaptive Lasso estimators in high-dimensional generalized linear models. The consistency of the adaptive Lasso estimator is obtained. We show that, if a reasonable initial estimator is available, under appropriate conditions, the adaptive Lasso correctly selects covariates with non zero coefficients with probability converging to one, and that the estimators of non zero coefficients have the same asymptotic distribution they would have if the zero coefficients were known in advance. Thus, the adaptive Lasso has an Oracle property. The results are examined by some simulations and a real example.  相似文献   

2.
Summary.  Contemporary statistical research frequently deals with problems involving a diverging number of parameters. For those problems, various shrinkage methods (e.g. the lasso and smoothly clipped absolute deviation) are found to be particularly useful for variable selection. Nevertheless, the desirable performances of those shrinkage methods heavily hinge on an appropriate selection of the tuning parameters. With a fixed predictor dimension, Wang and co-worker have demonstrated that the tuning parameters selected by a Bayesian information criterion type criterion can identify the true model consistently. In this work, similar results are further extended to the situation with a diverging number of parameters for both unpenalized and penalized estimators. Consequently, our theoretical results further enlarge not only the scope of applicabilityation criterion type criteria but also that of those shrinkage estimation methods.  相似文献   

3.
In this paper, we consider a single-index regression model for which we propose a robust estimation procedure for the model parameters and an efficient variable selection of relevant predictors. The proposed method is known as the penalized generalized signed-rank procedure. Asymptotic properties of the proposed estimator are established under mild regularity conditions. Extensive Monte Carlo simulation experiments are carried out to study the finite sample performance of the proposed approach. The simulation results demonstrate that the proposed method dominates many of the existing ones in terms of robustness of estimation and efficiency of variable selection. Finally, a real data example is given to illustrate the method.  相似文献   

4.
Penalized regression methods have recently gained enormous attention in statistics and the field of machine learning due to their ability of reducing the prediction error and identifying important variables at the same time. Numerous studies have been conducted for penalized regression, but most of them are limited to the case when the data are independently observed. In this paper, we study a variable selection problem in penalized regression models with autoregressive (AR) error terms. We consider three estimators, adaptive least absolute shrinkage and selection operator, bridge, and smoothly clipped absolute deviation, and propose a computational algorithm that enables us to select a relevant set of variables and also the order of AR error terms simultaneously. In addition, we provide their asymptotic properties such as consistency, selection consistency, and asymptotic normality. The performances of the three estimators are compared with one another using simulated and real examples.  相似文献   

5.
In this paper, we consider the weighted composite quantile regression for linear model with left-truncated data. The adaptive penalized procedure for variable selection is proposed. The asymptotic normality and oracle property of the resulting estimators are also established. Simulation studies are conducted to illustrate the finite sample performance of the proposed methods.  相似文献   

6.
Summary. We obtain the residual information criterion RIC, a selection criterion based on the residual log-likelihood, for regression models including classical regression models, Box–Cox transformation models, weighted regression models and regression models with autoregressive moving average errors. We show that RIC is a consistent criterion, and that simulation studies for each of the four models indicate that RIC provides better model order choices than the Akaike information criterion, corrected Akaike information criterion, final prediction error, C p and R adj2, except when the sample size is small and the signal-to-noise ratio is weak. In this case, none of the criteria performs well. Monte Carlo results also show that RIC is superior to the consistent Bayesian information criterion BIC when the signal-to-noise ratio is not weak, and it is comparable with BIC when the signal-to-noise ratio is weak and the sample size is large.  相似文献   

7.
8.
We propose a robust rank-based estimation and variable selection in double generalized linear models when the number of parameters diverges with the sample size. The consistency of the variable selection procedure and asymptotic properties of the resulting estimators are established under appropriate selection of tuning parameters. Simulations are performed to assess the finite sample performance of the proposed estimation and variable selection procedure. In the presence of gross outliers, the proposed method is showing that the variable selection method works better. For practical application, a real data application is provided using nutritional epidemiology data, in which we explore the relationship between plasma beta-carotene levels and personal characteristics (e.g. age, gender, fat, etc.) as well as dietary factors (e.g. smoking status, intake of cholesterol, etc.).  相似文献   

9.
In many conventional scientific investigations with high or ultra-high dimensional feature spaces, the relevant features, though sparse, are large in number compared with classical statistical problems, and the magnitude of their effects tapers off. It is reasonable to model the number of relevant features as a diverging sequence when sample size increases. In this paper, we investigate the properties of the extended Bayes information criterion (EBIC) (Chen and Chen, 2008) for feature selection in linear regression models with diverging number of relevant features in high or ultra-high dimensional feature spaces. The selection consistency of the EBIC in this situation is established. The application of EBIC to feature selection is considered in a SCAD cum EBIC procedure. Simulation studies are conducted to demonstrate the performance of the SCAD cum EBIC procedure in finite sample cases.  相似文献   

10.
High-dimensional sparse modeling with censored survival data is of great practical importance, as exemplified by applications in high-throughput genomic data analysis. In this paper, we propose a class of regularization methods, integrating both the penalized empirical likelihood and pseudoscore approaches, for variable selection and estimation in sparse and high-dimensional additive hazards regression models. When the number of covariates grows with the sample size, we establish asymptotic properties of the resulting estimator and the oracle property of the proposed method. It is shown that the proposed estimator is more efficient than that obtained from the non-concave penalized likelihood approach in the literature. Based on a penalized empirical likelihood ratio statistic, we further develop a nonparametric likelihood approach for testing the linear hypothesis of regression coefficients and constructing confidence regions consequently. Simulation studies are carried out to evaluate the performance of the proposed methodology and also two real data sets are analyzed.  相似文献   

11.
In this paper, we study the problem of estimation and variable selection for generalised partially linear single-index models based on quasi-likelihood, extending existing studies on variable selection for partially linear single-index models to binary and count responses. To take into account the unit norm constraint of the index parameter, we use the ‘delete-one-component’ approach. The asymptotic normality of the estimates is demonstrated. Furthermore, the smoothly clipped absolute deviation penalty is added for variable selection of parameters both in the nonparametric part and the parametric part, and the oracle property of the variable selection procedure is shown. Finally, some simulation studies are carried out to illustrate the finite sample performance.  相似文献   

12.
13.
This article studies variable selection and parameter estimation in the partially linear model when the number of covariates in the linear part increases to infinity. Using the bridge penalty method, we succeed in selecting the important covariates of the linear part. Under regularity conditions, we have shown that the bridge penalized estimator of the parametric part enjoys the oracle property. We also obtain the convergence rate of the estimator of the nonparametric part. Simulation studies show that the bridge estimator performs as well as the oracle estimator for the partially linear model. An application is analyzed to illustrate the bridge procedure.  相似文献   

14.
Penalized regression methods have for quite some time been a popular choice for addressing challenges in high dimensional data analysis. Despite their popularity, their application to time series data has been limited. This paper concerns bridge penalized methods in a linear regression time series model. We first prove consistency, sparsity and asymptotic normality of bridge estimators under a general mixing model. Next, as a special case of mixing errors, we consider bridge regression with autoregressive and moving average (ARMA) error models and develop a computational algorithm that can simultaneously select important predictors and the orders of ARMA models. Simulated and real data examples demonstrate the effective performance of the proposed algorithm and the improvement over ordinary bridge regression.  相似文献   

15.
In this paper, we consider the problem of estimating the number of components of a superimposed nonlinear sinusoids model of a signal in the presence of additive noise. We propose and provide a detailed empirical comparison of robust methods for estimation of the number of components. The proposed methods, which are robust modifications of the commonly used information theoretic criteria, are based on various M-estimator approaches and are robust with respect to outliers present in the data and heavy-tailed noise. The proposed methods are compared with the usual non-robust methods through extensive simulations under varied model scenarios. We also present real signal analysis of two speech signals to show the usefulness of the proposed methodology.  相似文献   

16.
The authors propose the local likelihood method for the time-varying coefficient additive hazards model. They use the Newton-Raphson algorithm to maximize the likelihood into which a local polynomial expansion has been incorporated. They establish the asymptotic properties for the time-varying coefficient estimators and derive explicit expressions for the variance and bias. The authors present simulation results describing the performance of their approach for finite sample sizes. Their numerical comparisons show the stability and efficiency of the local maximum likelihood estimator. They finally illustrate their proposal with data from a laryngeal cancer clinical study.  相似文献   

17.
18.
Kaifeng Zhao 《Statistics》2016,50(6):1276-1289
This paper considers variable selection in additive quantile regression based on group smoothly clipped absolute deviation (gSCAD) penalty. Although shrinkage variable selection in additive models with least-squares loss has been well studied, quantile regression is sufficiently different from mean regression to deserve a separate treatment. It is shown that the gSCAD estimator can correctly identify the significant components and at the same time maintain the usual convergence rates in estimation. Simulation studies are used to illustrate our method.  相似文献   

19.
In survival studies, current status data are frequently encountered when some individuals in a study are not successively observed. This paper considers the problem of simultaneous variable selection and parameter estimation in the high-dimensional continuous generalized linear model with current status data. We apply the penalized likelihood procedure with the smoothly clipped absolute deviation penalty to select significant variables and estimate the corresponding regression coefficients. With a proper choice of tuning parameters, the resulting estimator is shown to be a root n/pn-consistent estimator under some mild conditions. In addition, we show that the resulting estimator has the same asymptotic distribution as the estimator obtained when the true model is known. The finite sample behavior of the proposed estimator is evaluated through simulation studies and a real example.  相似文献   

20.
We address the problem of robust model selection for finite memory stochastic processes. Consider m independent samples, with most of them being realizations of the same stochastic process with law Q, which is the one we want to retrieve. We define the asymptotic breakdown point γ for a model selection procedure and also we devise a model selection procedure. We compute the value of γ which is 0.5, when all the processes are Markovian. This result is valid for any family of finite order Markov models but for simplicity we will focus on the family of variable length Markov chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号