首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
When the finite population ‘totals’ are estimated for individual areas, they do not necessarily add up to the known ‘total’ for all areas. Benchmarking (BM) is a technique used to ensure that the totals for all areas match the grand total, which can be obtained from an independent source. BM is desirable to practitioners of survey sampling. BM shifts the small-area estimators to accommodate the constraint. In doing so, it can provide increased precision to the small-area estimators of the finite population means or totals. The Scott–Smith model is used to benchmark the finite population means of small areas. This is a one-way random effects model for a superpopulation, and it is computationally convenient to use a Bayesian approach. We illustrate our method by estimating body mass index using data in the third National Health and Nutrition Examination Survey. Several properties of the benchmarked small-area estimators are obtained using a simulation study.  相似文献   

2.
In this article, we use a latent class model (LCM) with prevalence modeled as a function of covariates to assess diagnostic test accuracy in situations where the true disease status is not observed, but observations on three or more conditionally independent diagnostic tests are available. A fast Monte Carlo expectation–maximization (MCEM) algorithm with binary (disease) diagnostic data is implemented to estimate parameters of interest; namely, sensitivity, specificity, and prevalence of the disease as a function of covariates. To obtain standard errors for confidence interval construction of estimated parameters, the missing information principle is applied to adjust information matrix estimates. We compare the adjusted information matrix-based standard error estimates with the bootstrap standard error estimates both obtained using the fast MCEM algorithm through an extensive Monte Carlo study. Simulation demonstrates that the adjusted information matrix approach estimates the standard error similarly with the bootstrap methods under certain scenarios. The bootstrap percentile intervals have satisfactory coverage probabilities. We then apply the LCM analysis to a real data set of 122 subjects from a Gynecologic Oncology Group study of significant cervical lesion diagnosis in women with atypical glandular cells of undetermined significance to compare the diagnostic accuracy of a histology-based evaluation, a carbonic anhydrase-IX biomarker-based test and a human papillomavirus DNA test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号