首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article is concerned with one discrete nonparametric kernel and two parametric regression approaches for providing the evolution law of pavement deterioration. The first parametric approach is a survival data analysis method; and the second is a nonlinear mixed-effects model. The nonparametric approach consists of a regression estimator using the discrete associated kernels. Some asymptotic properties of the discrete nonparametric kernel estimator are shown as, in particular, its almost sure consistency. Moreover, two data-driven bandwidth selection methods are also given, with a new theoretical explicit expression of optimal bandwidth provided for this nonparametric estimator. A comparative simulation study is realized with an application of bootstrap methods to a measure of statistical accuracy.  相似文献   

2.
In this paper, we investigate the asymptotic properties of the kernel estimator for non parametric regression operator when the functional stationary ergodic data with randomly censorship are considered. More precisely, we introduce the kernel-type estimator of the non parametric regression operator with the responses randomly censored and obtain the almost surely convergence with rate as well as the asymptotic normality of the estimator. As an application, the asymptotic (1 ? ζ) confidence interval of the regression operator is also presented (0 < ζ < 1). Finally, the simulation study is carried out to show the finite-sample performances of the estimator.  相似文献   

3.
We propose several new tests for monotonicity of regression functions based on different empirical processes of residuals and pseudo‐residuals. The residuals are obtained from an unconstrained kernel regression estimator whereas the pseudo‐residuals are obtained from an increasing regression estimator. Here, in particular, we consider a recently developed simple kernel‐based estimator for increasing regression functions based on increasing rearrangements of unconstrained non‐parametric estimators. The test statistics are estimated distance measures between the regression function and its increasing rearrangement. We discuss the asymptotic distributions, consistency and small sample performances of the tests.  相似文献   

4.
In this article we establish pointwise asymptotic normality of nonparametric kernel estimator of regression function for a left truncation model. It is assumed that the lifetime observations with multivariate covariates form a stationary α-mixing sequence. Also, the asymptotic normality of the estimation of the covariable's density is considered. As a by-product, we obtain a uniform weak convergence rate for the product-limit estimator of the lifetime and truncated distributions under dependence, which is interesting independently. Finite sample behavior of the estimator of the regression function is investigated as well.  相似文献   

5.
We present a new approach to regression function estimation in which a non-parametric regression estimator is guided by a parametric pilot estimate with the aim of reducing the bias. New classes of parametrically guided kernel weighted local polynomial estimators are introduced and formulae for asymptotic expectation and variance, hence approximated mean squared error and mean integrated squared error, are derived. It is shown that the new classes of estimators have the very same large sample variance as the estimators in the standard non-parametric setting, while there is substantial room for reducing the bias if the chosen parametric pilot function belongs to a wide neighbourhood around the true regression line. Bias reduction is discussed in light of examples and simulations.  相似文献   

6.
The mode of a distribution provides an important summary of data and is often estimated on the basis of some non‐parametric kernel density estimator. This article develops a new data analysis tool called modal linear regression in order to explore high‐dimensional data. Modal linear regression models the conditional mode of a response Y given a set of predictors x as a linear function of x . Modal linear regression differs from standard linear regression in that standard linear regression models the conditional mean (as opposed to mode) of Y as a linear function of x . We propose an expectation–maximization algorithm in order to estimate the regression coefficients of modal linear regression. We also provide asymptotic properties for the proposed estimator without the symmetric assumption of the error density. Our empirical studies with simulated data and real data demonstrate that the proposed modal regression gives shorter predictive intervals than mean linear regression, median linear regression and MM‐estimators.  相似文献   

7.
Consider a regression model where the regression function is the sum of a linear and a nonparametric component. Assuming that the errors of the model follow a stationary strong mixing process with mean zero, the problem of bandwidth selection for a kernel estimator of the nonparametric component is addressed here. We obtain an asymptotic expression for an optimal band-width and we propose to use a plug-in methodology in order to estimate this bandwidth through preliminary estimates of the unknown quantities. Asymptotic optimality for the plug-in bandwidth is established.  相似文献   

8.
Simple Transformation Techniques for Improved Non-parametric Regression   总被引:2,自引:0,他引:2  
We propose and investigate two new methods for achieving less bias in non- parametric regression. We show that the new methods have bias of order h 4, where h is a smoothing parameter, in contrast to the basic kernel estimator's order h 2. The methods are conceptually very simple. At the first stage, perform an ordinary non-parametric regression on { xi , Yi } to obtain m^ ( xi ) (we use local linear fitting). In the first method, at the second stage, repeat the non-parametric regression but on the transformed dataset { m^ ( xi , Yi )}, taking the estimator at x to be this second stage estimator at m^ ( x ). In the second, and more appealing, method, again perform non-parametric regression on { m^ ( xi , Yi )}, but this time make the kernel weights depend on the original x scale rather than using the m^ ( x ) scale. We concentrate more of our effort in this paper on the latter because of its advantages over the former. Our emphasis is largely theoretical, but we also show that the latter method has practical potential through some simulated examples.  相似文献   

9.
In this article, we propose some new generalizations of M-estimation procedures for single-index regression models in presence of randomly right-censored responses. We derive consistency and asymptotic normality of our estimates. The results are proved in order to be adapted to a wide range of techniques used in a censored regression framework (e.g. synthetic data or weighted least squares). As in the uncensored case, the estimator of the single-index parameter is seen to have the same asymptotic behavior as in a fully parametric scheme. We compare these new estimators with those based on the average derivative technique of Lu and Burke [2005. Censored multiple regression by the method of average derivatives. J. Multivariate Anal. 95, 182–205] through a simulation study.  相似文献   

10.
Motivated by an application with complex survey data, we show that for logistic regression with a simple matched-pairs design, infinitely replicating observations and maximizing the conditional likelihood results in an estimator exactly identical to the unconditional maximum likelihood estimator based on the original sample, which is inconsistent. Therefore, applying conditional likelihood methods to a pseudosample with observations replicated a large number of times can lead to an inconsistent estimator; this casts doubt on one possible approach to conditional logistic regression with complex survey data. We speculate that for more general designs, an asymptotic equivalence holds.  相似文献   

11.
A Semi-parametric Regression Model with Errors in Variables   总被引:4,自引:0,他引:4  
Abstract.  In this paper, we consider a partial linear regression model with measurement errors in possibly all the variables. We use a method of moments and deconvolution to construct a new class of parametric estimators together with a non-parametric kernel estimator. Strong convergence, optimal rate of weak convergence and asymptotic normality of the estimators are investigated.  相似文献   

12.
This study treats an asymptotic distribution for measures of predictive power for generalized linear models (GLMs). We focus on the regression correlation coefficient (RCC) that is one of the measures of predictive power. The RCC, proposed by Zheng and Agresti is a population value and a generalization of the population value for the coefficient of determination. Therefore, the RCC is easy to interpret and familiar. Recently, Takahashi and Kurosawa provided an explicit form of the RCC and proposed a new RCC estimator for a Poisson regression model. They also showed the validity of the new estimator compared with other estimators. This study discusses the new statistical properties of the RCC for the Poisson regression model. Furthermore, we show an asymptotic normality of the RCC estimator.  相似文献   

13.
Abstract

This study concerns semiparametric approaches to estimate discrete multivariate count regression functions. The semiparametric approaches investigated consist of combining discrete multivariate nonparametric kernel and parametric estimations such that (i) a prior knowledge of the conditional distribution of model response may be incorporated and (ii) the bias of the traditional nonparametric kernel regression estimator of Nadaraya-Watson may be reduced. We are precisely interested in combination of the two estimations approaches with some asymptotic properties of the resulting estimators. Asymptotic normality results were showed for nonparametric correction terms of parametric start function of the estimators. The performance of discrete semiparametric multivariate kernel estimators studied is illustrated using simulations and real count data. In addition, diagnostic checks are performed to test the adequacy of the parametric start model to the true discrete regression model. Finally, using discrete semiparametric multivariate kernel estimators provides a bias reduction when the parametric multivariate regression model used as start regression function belongs to a neighborhood of the true regression model.  相似文献   

14.
In this paper we propose a new nonparametric estimator of the conditional distribution function under a semiparametric censorship model. We establish an asymptotic representation of the estimator as a sum of iid random variables, balanced by some kernel weights. This representation is used for obtaining large sample results such as the rate of uniform convergence of the estimator, or its limit distributional law. We prove that the new estimator outperforms the conditional Kaplan–Meier estimator for censored data, in the sense that it exhibits lower asymptotic variance. Illustration through real data analysis is provided.  相似文献   

15.
We propose a robust regression method called regression with outlier shrinkage (ROS) for the traditional n>pn>p cases. It improves over the other robust regression methods such as least trimmed squares (LTS) in the sense that it can achieve maximum breakdown value and full asymptotic efficiency simultaneously. Moreover, its computational complexity is no more than that of LTS. We also propose a sparse estimator, called sparse regression with outlier shrinkage (SROS), for robust variable selection and estimation. It is proven that SROS can not only give consistent selection but also estimate the nonzero coefficients with full asymptotic efficiency under the normal model. In addition, we introduce a concept of nearly regression equivariant estimator for understanding the breakdown properties of sparse estimators, and prove that SROS achieves the maximum breakdown value of nearly regression equivariant estimators. Numerical examples are presented to illustrate our methods.  相似文献   

16.
In this paper we use non-parametric local polynomial methods to estimate the regression function, m ( x ). Y may be a binary or continuous response variable, and X is continuous with non-uniform density. The main contributions of this paper are the weak convergence of a bandwidth process for kernels of order (0, k ), k =2 j , j ≥1 and the proposal of a local data-driven bandwidth selection method which is particularly beneficial for the case when X is not distributed uniformly. This selection method minimizes estimates of the asymptotic MSE and estimates the bias portion in an innovative way which relies on the order of the kernel and not estimation of m 2( x ) directly. We show that utilization of this method results in the achievement of the optimal asymptotic MSE by the estimator, i.e. the method is efficient. Simulation studies are provided which illustrate the method for both binary and continuous response cases.  相似文献   

17.
Abstract

This paper is focused on kernel estimation of the gradient of a multivariate regression function. Despite the importance of this topic, the progress in this area is rather slow. Our aim is to construct a gradient estimator using the idea of local linear estimator for a regression function. The quality of this estimator is expressed in terms of the Mean Integrated Square Error. We focus on a choice of bandwidth matrix. Further, we present some data-driven methods for its choice and develop a new approach. The performance of presented methods is illustrated using a simulation study and real data example.  相似文献   

18.
We focus on the nonparametric regression of a scalar response on a functional explanatory variable. As an alternative to the well-known Nadaraya-Watson estimator for regression function in this framework, the locally modelled regression estimator performs very well [cf. [Barrientos-Marin, J., Ferraty, F., and Vieu, P. (2010), ‘Locally Modelled Regression and Functional Data’, Journal of Nonparametric Statistics, 22, 617–632]. In this paper, the asymptotic properties of locally modelled regression estimator for functional data are considered. The mean-squared convergence as well as asymptotic normality for the estimator are established. We also adapt the empirical likelihood method to construct the point-wise confidence intervals for the regression function and derive the Wilk's phenomenon for the empirical likelihood inference. Furthermore, a simulation study is presented to illustrate our theoretical results.  相似文献   

19.
Missing covariate data are common in biomedical studies. In this article, by using the non parametric kernel regression technique, a new imputation approach is developed for the Cox-proportional hazard regression model with missing covariates. This method achieves the same efficiency as the fully augmented weighted estimators (Qi et al. 2005. Journal of the American Statistical Association, 100:1250) and has a simpler form. The asymptotic properties of the proposed estimator are derived and analyzed. The comparisons between the proposed imputation method and several other existing methods are conducted via a number of simulation studies and a mouse leukemia data.  相似文献   

20.
We focus on the construction of confidence corridors for multivariate nonparametric generalized quantile regression functions. This construction is based on asymptotic results for the maximal deviation between a suitable nonparametric estimator and the true function of interest, which follow after a series of approximation steps including a Bahadur representation, a new strong approximation theorem, and exponential tail inequalities for Gaussian random fields. As a byproduct we also obtain multivariate confidence corridors for the regression function in the classical mean regression. To deal with the problem of slowly decreasing error in coverage probability of the asymptotic confidence corridors, which results in meager coverage for small sample sizes, a simple bootstrap procedure is designed based on the leading term of the Bahadur representation. The finite-sample properties of both procedures are investigated by means of a simulation study and it is demonstrated that the bootstrap procedure considerably outperforms the asymptotic bands in terms of coverage accuracy. Finally, the bootstrap confidence corridors are used to study the efficacy of the National Supported Work Demonstration, which is a randomized employment enhancement program launched in the 1970s. This article has supplementary materials online.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号