首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The maximum likelihood equations for a multivariate normal model with structured mean and structured covariance matrix may not have an explicit solution. In some cases the model's error term may be decomposed as the sum of two independent error terms, each having a patterned covariance matrix, such that if one of the unobservable error terms is artificially treated as "missing data", the EM algorithm can be used to compute the maximum likelihood estimates for the original problem. Some decompositions produce likelihood equations which do not have an explicit solution at each iteration of the EM algorithm, but within-iteration explicit solutions are shown for two general classes of models including covariance component models used for analysis of longitudinal data.  相似文献   

2.
Likelihood-based marginalized models using random effects have become popular for analyzing longitudinal categorical data. These models permit direct interpretation of marginal mean parameters and characterize the serial dependence of longitudinal outcomes using random effects [12,22]. In this paper, we propose model that expands the use of previous models to accommodate longitudinal nominal data. Random effects using a new covariance matrix with a Kronecker product composition are used to explain serial and categorical dependence. The Quasi-Newton algorithm is developed for estimation. These proposed methods are illustrated with a real data set and compared with other standard methods.  相似文献   

3.
The main difficulty in parametric analysis of longitudinal data lies in specifying covariance structure. Several covariance structures, which usually reflect one series of measurements collected over time, have been presented in the literature. However there is a lack of literature on covariance structures designed for repeated measures specified by more than one repeated factor. In this paper a new, general method of modelling covariance structure based on the Kronecker product of underlying factor specific covariance profiles is presented. The method has an attractive interpretation in terms of independent factor specific contribution to overall within subject covariance structure and can be easily adapted to standard software.  相似文献   

4.
We propose an adjusted likelihood ratio test of two-factor separability (Kronecker product structure) for unbalanced multivariate repeated measures data. Here we address the particular case where the within subject correlation is believed to decrease exponentially in both dimensions (e.g., temporal and spatial dimensions). However, the test can be easily generalized to factor specific matrices of any structure. A simulation study is conducted to assess the inference accuracy of the proposed test. Longitudinal medical imaging data concerning schizophrenia and caudate morphology illustrate the methodology.  相似文献   

5.
We explore the performance accuracy of the linear and quadratic classifiers for high-dimensional higher-order data, assuming that the class conditional distributions are multivariate normal with locally doubly exchangeable covariance structure. We derive a two-stage procedure for estimating the covariance matrix: at the first stage, the Lasso-based structure learning is applied to sparsifying the block components within the covariance matrix. At the second stage, the maximum-likelihood estimators of all block-wise parameters are derived assuming the doubly exchangeable within block covariance structure and a Kronecker product structured mean vector. We also study the effect of the block size on the classification performance in the high-dimensional setting and derive a class of asymptotically equivalent block structure approximations, in a sense that the choice of the block size is asymptotically negligible.  相似文献   

6.
The elderly population in the USA is expected to double in size by the year 2025, making longitudinal health studies of this population of increasing importance. The degree of loss to follow-up in studies of the elderly, which is often because elderly people cannot remain in the study, enter a nursing home or die, make longitudinal studies of this population problematic. We propose a latent class model for analysing multiple longitudinal binary health outcomes with multiple-cause non-response when the data are missing at random and a non-likelihood-based analysis is performed. We extend the estimating equations approach of Robins and co-workers to latent class models by reweighting the multiple binary longitudinal outcomes by the inverse probability of being observed. This results in consistent parameter estimates when the probability of non-response depends on observed outcomes and covariates (missing at random) assuming that the model for non-response is correctly specified. We extend the non-response model so that institutionalization, death and missingness due to failure to locate, refusal or incomplete data each have their own set of non-response probabilities. Robust variance estimates are derived which account for the use of a possibly misspecified covariance matrix, estimation of missing data weights and estimation of latent class measurement parameters. This approach is then applied to a study of lower body function among a subsample of the elderly participating in the 6-year Longitudinal Study of Aging.  相似文献   

7.
This paper focuses attention on the use of direct (Kronecker) product techniques in the study of general balanced models. Direct products provide a powerful tool which facilitates the derivation of certain properties of these models. This is clearly demonstrated in determining the distribution of sums of squares in a balanced mixed-effects model under normality assumptions. Further evidence of its usefulness is also indicated.  相似文献   

8.
This article studies a general joint model for longitudinal measurements and competing risks survival data. The model consists of a linear mixed effects sub-model for the longitudinal outcome, a proportional cause-specific hazards frailty sub-model for the competing risks survival data, and a regression sub-model for the variance–covariance matrix of the multivariate latent random effects based on a modified Cholesky decomposition. The model provides a useful approach to adjust for non-ignorable missing data due to dropout for the longitudinal outcome, enables analysis of the survival outcome with informative censoring and intermittently measured time-dependent covariates, as well as joint analysis of the longitudinal and survival outcomes. Unlike previously studied joint models, our model allows for heterogeneous random covariance matrices. It also offers a framework to assess the homogeneous covariance assumption of existing joint models. A Bayesian MCMC procedure is developed for parameter estimation and inference. Its performances and frequentist properties are investigated using simulations. A real data example is used to illustrate the usefulness of the approach.  相似文献   

9.
Longitudinal investigations play an increasingly prominent role in biomedical research. Much of the literature on specifying and fitting linear models for serial measurements uses methods based on the standard multivariate linear model. This article proposes a more flexible approach that permits specification of the expected response as an arbitrary linear function of fixed and time-varying covariates so that mean-value functions can be derived from subject matter considerations rather than methodological constraints. Three families of models for the covariance function are discussed: multivariate, autoregressive, and random effects. Illustrations demonstrate the flexibility and utility of the proposed approach to longitudinal analysis.  相似文献   

10.
Longitudinal studies occcur frequently in many different disciplines. To fully utilize the potential value of the information contained in a longitudinal data, various multivariate linear models have been proposed. The methodology and analysis are somewhat unique in their own ways and their relationships are not well understood and presented. This article describes a general multivaritate linear model for longitudinal data and attempts to provide a constructive formulation of the components in the mean response profile. The objective is to point out the extension and connections of some well-known models that have been obscured by different areas of application. More imporiantly, the model is expressed in a unified regression form from the subject matter considerations. Such an approach is simpler and more intuitive than other ways to modeling and parameter estimation. As a cmsequeace the analyses of the general class cf models for longitudional data can be casily implemented with standard software.  相似文献   

11.
Linear random effects models for longitudinal data discussed by Laird and Ware (1982), Jennrich and Schluchter (1986), Lange and Laird (1989), and others are extended in a straight forward manner to nonlinear random effects models. This results in a simple computational approach which accommodates patterned covariance matrices and data insufficient for fitting each subject separately. The technique is demonstrated with an interesting medical data set, and a short, simple SAS PROC IML program based on the EM algorithm is presented.  相似文献   

12.
We present a scalable Bayesian modelling approach for identifying brain regions that respond to a certain stimulus and use them to classify subjects. More specifically, we deal with multi‐subject electroencephalography (EEG) data with a binary response distinguishing between alcoholic and control groups. The covariates are matrix‐variate with measurements taken from each subject at different locations across multiple time points. EEG data have a complex structure with both spatial and temporal attributes. We use a divide‐and‐conquer strategy and build separate local models, that is, one model at each time point. We employ Bayesian variable selection approaches using a structured continuous spike‐and‐slab prior to identify the locations that respond to a certain stimulus. We incorporate the spatio‐temporal structure through a Kronecker product of the spatial and temporal correlation matrices. We develop a highly scalable estimation algorithm, using likelihood approximation, to deal with large number of parameters in the model. Variable selection is done via clustering of the locations based on their duration of activation. We use scoring rules to evaluate the prediction performance. Simulation studies demonstrate the efficiency of our scalable algorithm in terms of estimation and fast computation. We present results using our scalable approach on a case study of multi‐subject EEG data.  相似文献   

13.
Under the assumption of multivariate normality the likelihood ratio test is derived to test a hypothesis for Kronecker product structure on a covariance matrix in the context of multivariate repeated measures data. Although the proposed hypothesis testing can be computationally performed by indirect use of Proc Mixed of SAS, the Proc Mixed algorithm often fails to converge. We provide an alternative algorithm. The algorithm is illustrated with two real data sets. A simulation study is also conducted for the purpose of sample size consideration.  相似文献   

14.
Missing data in longitudinal studies can create enormous challenges in data analysis when coupled with the positive-definiteness constraint on a covariance matrix. For complete balanced data, the Cholesky decomposition of a covariance matrix makes it possible to remove the positive-definiteness constraint and use a generalized linear model setup to jointly model the mean and covariance using covariates (Pourahmadi, 2000). However, this approach may not be directly applicable when the longitudinal data are unbalanced, as coherent regression models for the dependence across all times and subjects may not exist. Within the existing generalized linear model framework, we show how to overcome this and other challenges by embedding the covariance matrix of the observed data for each subject in a larger covariance matrix and employing the familiar EM algorithm to compute the maximum likelihood estimates of the parameters and their standard errors. We illustrate and assess the methodology using real data sets and simulations.  相似文献   

15.
In this article, we present a framework of estimating patterned covariance of interest in the multivariate linear models. The main idea in it is to estimate a patterned covariance by minimizing a trace distance function between outer product of residuals and its expected value. The proposed framework can provide us explicit estimators, called outer product least-squares estimators, for parameters in the patterned covariance of the multivariate linear model without or with restrictions on regression coefficients. The outer product least-squares estimators enjoy the desired properties in finite and large samples, including unbiasedness, invariance, consistency and asymptotic normality. We still apply the framework to three special situations where their patterned covariances are the uniform correlation, a generalized uniform correlation and a general q-dependence structure, respectively. Simulation studies for three special cases illustrate that the proposed method is a competent alternative of the maximum likelihood method in finite size samples.  相似文献   

16.
《统计学通讯:理论与方法》2012,41(13-14):2512-2523
In this article, the multivariate normal distribution with a Kronecker product structured covariance matrix is studied. Particularly focused is the estimation of a Kronecker structured covariance matrix of order three, the so called double separable covariance matrix. The suggested estimation generalizes the procedure proposed by Srivastava et al. (2008 Srivastava , M. , von Rosen , T. , von Rosen , D. ( 2008 ). Models with a Kronecker product covariance structure: Estimation and testing Mathemat. Meth. Statist. 17 : 357370 .[Crossref] [Google Scholar]) for a separable covariance matrix. The restrictions imposed by separability and double separability are also discussed.  相似文献   

17.
Clustering gene expression time course data is an important problem in bioinformatics because understanding which genes behave similarly can lead to the discovery of important biological information. Statistically, the problem of clustering time course data is a special case of the more general problem of clustering longitudinal data. In this paper, a very general and flexible model-based technique is used to cluster longitudinal data. Mixtures of multivariate t-distributions are utilized, with a linear model for the mean and a modified Cholesky-decomposed covariance structure. Constraints are placed upon the covariance structure, leading to a novel family of mixture models, including parsimonious models. In addition to model-based clustering, these models are also used for model-based classification, i.e., semi-supervised clustering. Parameters, including the component degrees of freedom, are estimated using an expectation-maximization algorithm and two different approaches to model selection are considered. The models are applied to simulated data to illustrate their efficacy; this includes a comparison with their Gaussian analogues—the use of these Gaussian analogues with a linear model for the mean is novel in itself. Our family of multivariate t mixture models is then applied to two real gene expression time course data sets and the results are discussed. We conclude with a summary, suggestions for future work, and a discussion about constraining the degrees of freedom parameter.  相似文献   

18.
Semiparametric regression models and estimating covariance functions are very useful in longitudinal study. Unfortunately, challenges arise in estimating the covariance function of longitudinal data collected at irregular time points. In this article, for mean term, a partially linear model is introduced and for covariance structure, a modified Cholesky decomposition approach is proposed to heed the positive-definiteness constraint. We estimate the regression function by using the local linear technique and propose quasi-likelihood estimating equations for both the mean and covariance structures. Moreover, asymptotic normality of the resulting estimators is established. Finally, simulation study and real data analysis are used to illustrate the proposed approach.  相似文献   

19.
Whittemore (1981) proposed an approach for calculating the sample size needed to test hypotheses with specified significance and power against a given alternative for logistic regression with small response probability. Based on the distribution of covariate, which could be either discrete or continuous, this approach first provides a simple closed-form approximation to the asymptotic covariance matrix of the maximum likelihood estimates, and then uses it to calculate the sample size needed to test a hypothesis about the parameter. Self et al. (1992) described a general approach for power and sample size calculations within the framework of generalized linear models, which include logistic regression as a special case. Their approach is based on an approximation to the distribution of the likelihood ratio statistic. Unlike the Whittemore approach, their approach is not limited to situations of small response probability. However, it is restricted to models with a finite number of covariate configurations. This study compares these two approaches to see how accurate they would be for the calculations of power and sample size in logistic regression models with various response probabilities and covariate distributions. The results indicate that the Whittemore approach has a slight advantage in achieving the nominal power only for one case with small response probability. It is outperformed for all other cases with larger response probabilities. In general, the approach proposed in Self et al. (1992) is recommended for all values of the response probability. However, its extension for logistic regression models with an infinite number of covariate configurations involves an arbitrary decision for categorization and leads to a discrete approximation. As shown in this paper, the examined discrete approximations appear to be sufficiently accurate for practical purpose.  相似文献   

20.
Different longitudinal study designs require different statistical analysis methods and different methods of sample size determination. Statistical power analysis is a flexible approach to sample size determination for longitudinal studies. However, different power analyses are required for different statistical tests which arises from the difference between different statistical methods. In this paper, the simulation-based power calculations of F-tests with Containment, Kenward-Roger or Satterthwaite approximation of degrees of freedom are examined for sample size determination in the context of a special case of linear mixed models (LMMs), which is frequently used in the analysis of longitudinal data. Essentially, the roles of some factors, such as variance–covariance structure of random effects [unstructured UN or factor analytic FA0], autocorrelation structure among errors over time [independent IND, first-order autoregressive AR1 or first-order moving average MA1], parameter estimation methods [maximum likelihood ML and restricted maximum likelihood REML] and iterative algorithms [ridge-stabilized Newton-Raphson and Quasi-Newton] on statistical power of approximate F-tests in the LMM are examined together, which has not been considered previously. The greatest factor affecting statistical power is found to be the variance–covariance structure of random effects in the LMM. It appears that the simulation-based analysis in this study gives an interesting insight into statistical power of approximate F-tests for fixed effects in LMMs for longitudinal data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号