共查询到20条相似文献,搜索用时 15 毫秒
1.
Chi-Rong Li 《Journal of Statistical Computation and Simulation》2017,87(10):1940-1950
This study constructs a simultaneous confidence region for two combinations of coefficients of linear models and their ratios based on the concept of generalized pivotal quantities. Many biological studies, such as those on genetics, assessment of drug effectiveness, and health economics, are interested in a comparison of several dose groups with a placebo group and the group ratios. The Bonferroni correction and the plug-in method based on the multivariate-t distribution have been proposed for the simultaneous region estimation. However, the two methods are asymptotic procedures, and their performance in finite sample sizes has not been thoroughly investigated. Based on the concept of generalized pivotal quantity, we propose a Bonferroni correction procedure and a generalized variable (GV) procedure to construct the simultaneous confidence regions. To address a genetic concern of the dominance ratio, we conduct a simulation study to empirically investigate the probability coverage and expected length of the methods for various combinations of sample sizes and values of the dominance ratio. The simulation results demonstrate that the simultaneous confidence region based on the GV procedure provides sufficient coverage probability and reasonable expected length. Thus, it can be recommended in practice. Numerical examples using published data sets illustrate the proposed methods. 相似文献
2.
《Journal of Statistical Computation and Simulation》2012,82(8):927-936
A generalized confidence interval for the slope parameter in linear measurement error model is proposed in this article, which is based on the relation between the slope of classical regression model and the measurement error model. The performance of the confidence interval estimation procedure is studied numerically through Monte Carlo simulation in terms of coverage probability and expected length. 相似文献
3.
This paper considers constructing a new confidence interval for the slope parameter in the structural errors-in-variables model with known error variance associated with the regressors. Existing confidence intervals are so severely affected by Gleser–Hwang effect that they are subject to have poor empirical coverage probabilities and unsatisfactory lengths. Moreover, these problems get worse with decreasing reliability ratio which also result in more frequent absence of some existing intervals. To ease these issues, this paper presents a fiducial generalized confidence interval which maintains the correct asymptotic coverage. Simulation results show that this fiducial interval is slightly conservative while often having average length comparable or shorter than the other methods. Finally, we illustrate these confidence intervals with two real data examples, and in the second example some existing intervals do not exist. 相似文献
4.
《Journal of Statistical Computation and Simulation》2012,82(10):1235-1244
In this paper, we consider simultaneous confidence intervals for all-pairwise comparisons of treatment means in a one-way layout under heteroscedasticity. Two kinds of simultaneous intervals are provided based on the fiducial generalized pivotal quantities of the interest parameters. We prove that they both have asymptotically correct coverage. Simulation results and an example are also reported. It is concluded from calculational evidence that the second kind of simultaneous confidence intervals, which we provide, performs better than existing methods. 相似文献
5.
《Journal of Statistical Computation and Simulation》2012,82(3):524-534
Negative binomial group distribution was proposed in the literature which was motivated by inverse sampling when considering group inspection: products are inspected group by group, and the number of non-conforming items of a group is recorded only until the inspection of the whole group is finished. The non-conforming probability p of the population is thus the parameter of interest. In this paper, the confidence interval construction for this parameter is investigated. The common normal approximation and exact method are applied. To overcome the drawbacks of these commonly used methods, a composite method that is based on the confidence intervals of the negative binomial distribution is proposed, which benefits from the relationship between negative binomial distribution and negative binomial group distribution. Simulation studies are carried out to examine the performances of our methods. A real data example is also presented to illustrate the application of our method. 相似文献
6.
《Journal of Statistical Computation and Simulation》2012,82(12):887-898
This paper is concerned with the problem of obtaining the conditional confidence intervals for the parameters and reliability of the inverse Weibull distribution based on censored generalized order statistics, which are more general than the existing results in the literature. The coverage rate and the mean length of intervals have been obtained for different values of the shape parameter, via Monte Carlo simulation. Finally a numerical example is given to illustrate the inferential methods developed in this paper. 相似文献
7.
《Journal of Statistical Computation and Simulation》2012,82(7):1035-1054
Five estimation approaches have been developed to compute the confidence interval (CI) for the ratio of two lognormal means: (1) T, the CI based on the t-test procedure; (2) ML, a traditional maximum likelihood-based approach; (3) BT, a bootstrap approach; (4) R, the signed log-likelihood ratio statistic; and (5) R*, the modified signed log-likelihood ratio statistic. The purpose of this study was to assess the performance of these five approaches when applied to distributions other than lognormal distribution, for which they were derived. Performance was assessed in terms of average length and coverage probability of the CIs for each estimation approaches (i.e., T, ML, BT, R, and R*) when data followed a Weibull or gamma distribution. Four models were discussed in this study. In Model 1, the sample sizes and variances were equal within the two groups. In Model 2, the sample sizes were equal but variances were different within the two groups. In Model 3, the variances were different within the two groups and the larger variance was paired with the larger sample size. In Model 4, the variances were different within the two groups and the larger variance was paired with the smaller sample size. The results showed that when the variances of the two groups were equal, the t-test performed well, no matter what the underlying distribution was and how large the variances of the two groups were. The BT approach performed better than the others when the underlying distribution was not lognormal distribution, although it was inaccurate when the variances were large. The R* test did not perform well when the underlying distribution was Weibull or gamma distributed data, but it performed best when the data followed a lognormal distribution. 相似文献
8.
Based on the generalized inference idea, a new kind of generalized confidence intervals is derived for the among-group variance component in the heteroscedastic one-way random effects model. We construct structure equations of all variance components in the model based on their minimal sufficient statistics; meanwhile, the fiducial generalized pivotal quantity (FGPQ) can be obtained through solving an implicit equation of the parameter of interest. Then, the confidence interval is derived naturally from the FGPQ. Simulation results demonstrate that the new procedure performs very well in terms of both empirical coverage probability and average interval length. 相似文献
9.
Vasileios Alevizakos 《统计学通讯:理论与方法》2013,42(20):5138-5144
AbstractThe use of indices as an estimation tool of process capability is long-established among the statistical quality professionals. Numerous capability indices have been proposed in last few years. Cpm constitutes one of the most widely used capability indices and its estimation has attracted much interest. In this paper, we propose a new method for constructing an approximate confidence interval for the index Cpm. The proposed method is based on the asymptotic distribution of the index Cpm obtained by the Delta Method. Under some regularity conditions, the distribution of an estimator of the process capability index Cpm is asymptotically normal. 相似文献
10.
Clinical trials often use paired binomial data as their clinical endpoint. The confidence interval is frequently used to estimate the treatment performance. Tang et al. (2009) have proposed exact and approximate unconditional methods for constructing a confidence interval in the presence of incomplete paired binary data. The approach proposed by Tang et al. can be overly conservative with large expected confidence interval width (ECIW) in some situations. We propose a profile likelihood‐based method with a Jeffreys' prior correction to construct the confidence interval. This approach generates confidence interval with a much better coverage probability and shorter ECIWs. The performances of the method along with the corrections are demonstrated through extensive simulation. Finally, three real world data sets are analyzed by all the methods. Statistical Analysis System (SAS) codes to execute the profile likelihood‐based methods are also presented. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
11.
Comparison of accuracy between two diagnostic tests can be implemented by investigating the difference in paired Youden indices. However, few literature articles have discussed the inferences for the difference in paired Youden indices. In this paper, we propose an exact confidence interval for the difference in paired Youden indices based on the generalized pivotal quantities. For comparison, the maximum likelihood estimate‐based interval and a bootstrap‐based interval are also included in the study for the difference in paired Youden indices. Abundant simulation studies are conducted to compare the relative performance of these intervals by evaluating the coverage probability and average interval length. Our simulation results demonstrate that the exact confidence interval outperforms the other two intervals even with small sample size when the underlying distributions are normal. A real application is also used to illustrate the proposed intervals. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
12.
Sobhan Shafiei Hadi Saboori Mahdi Doostparast 《Journal of Statistical Computation and Simulation》2017,87(2):267-279
This paper considers problems of interval estimation and hypotheses testing for the generalized Lorenz curve under the Pareto distribution. Our approach is based on the concepts of generalized test variables and generalized pivotal quantities. The merits of the proposed procedures are numerically carried out and compared with asymptotic and bootstrap methods. Empirical evidence shows that the coverage accuracy of the proposed confidence intervals and the type I error control of the proposed exact tests are satisfactory. For illustration purposes, a real data set on median income of the 20 occupations in the United States Census of Population is analysed. 相似文献
13.
T. imkov 《Journal of applied statistics》2021,48(7):1199
In a ground-breaking paper published in 1990 by the Journal of the Royal Statistical Society, J.R.M. Hosking defined the L-moment of a random variable as an expectation of certain linear combinations of order statistics. L-moments are an alternative to conventional moments and recently they have been used often in inferential statistics. L-moments have several advantages over the conventional moments, including robustness to the the presence of outliers, which may lead to more accurate estimates in some cases as the characteristics of distributions. In this contribution, asymptotic theory and L-moments are used to derive confidence intervals of the population parameters and quantiles of the three-parametric generalized Pareto and extreme-value distributions. Computer simulations are performed to determine the performance of confidence intervals for the population quantiles based on L-moments and to compare them to those obtained by traditional estimation techniques. The results obtained show that they perform well in comparison to the moments and maximum likelihood methods when the interest is in higher quantiles, or even best. L-moments are especially recommended when the tail of the distribution is rather heavier and the sample size is small. The derived intervals are applied to real economic data, and specifically to market-opening asset prices. 相似文献
14.
Md Sazib Hasan 《Journal of Statistical Computation and Simulation》2018,88(8):1499-1514
The problems of estimating the mean and an upper percentile of a lognormal population with nonnegative values are considered. For estimating the mean of a such population based on data that include zeros, a simple confidence interval (CI) that is obtained by modifying Tian's [Inferences on the mean of zero-inflated lognormal data: the generalized variable approach. Stat Med. 2005;24:3223—3232] generalized CI, is proposed. A fiducial upper confidence limit (UCL) and a closed-form approximate UCL for an upper percentile are developed. Our simulation studies indicate that the proposed methods are very satisfactory in terms of coverage probability and precision, and better than existing methods for maintaining balanced tail error rates. The proposed CI and the UCL are simple and easy to calculate. All the methods considered are illustrated using samples of data involving airborne chlorine concentrations and data on diagnostic test costs. 相似文献
15.
In this paper, the hypothesis testing and confidence region construction for a linear combination of mean vectors for K independent multivariate normal populations are considered. A new generalized pivotal quantity and a new generalized test variable are derived based on the concepts of generalized p-values and generalized confidence regions. When only two populations are considered, our results are equivalent to those proposed by Gamage et al. [Generalized p-values and confidence regions for the multivariate Behrens–Fisher problem and MANOVA, J. Multivariate Aanal. 88 (2004), pp. 117–189] in the bivariate case, which is also known as the bivariate Behrens–Fisher problem. However, in some higher dimension cases, these two results are quite different. The generalized confidence region is illustrated with two numerical examples and the merits of the proposed method are numerically compared with those of the existing methods with respect to their expected areas, coverage probabilities under different scenarios. 相似文献
16.
Rahim Mahmoudvand 《Journal of applied statistics》2009,36(4):429-442
In this article we introduce an approximately unbiased estimator for the population coefficient of variation, τ, in a normal distribution. The accuracy of this estimator is examined by several criteria. Using this estimator and its variance, two approximate confidence intervals for τ are introduced. The performance of the new confidence intervals is compared to those obtained by current methods. 相似文献
17.
Mohamed Tahir 《统计学通讯:理论与方法》2013,42(2):501-506
A sequential confidence interval of fixed width 2d d > 0, is constructed for the correlation coefficient of a bivariate normal distribution. It is shown that the coverage probability is approximately equal to a preassigned number γ, 0 < γ < as d → 0. 相似文献
18.
A conformance proportion is an important and useful index to assess industrial quality improvement. Statistical confidence limits for a conformance proportion are usually required not only to perform statistical significance tests, but also to provide useful information for determining practical significance. In this article, we propose approaches for constructing statistical confidence limits for a conformance proportion of multiple quality characteristics. Under the assumption that the variables of interest are distributed with a multivariate normal distribution, we develop an approach based on the concept of a fiducial generalized pivotal quantity (FGPQ). Without any distribution assumption on the variables, we apply some confidence interval construction methods for the conformance proportion by treating it as the probability of a success in a binomial distribution. The performance of the proposed methods is evaluated through detailed simulation studies. The results reveal that the simulated coverage probability (cp) for the FGPQ-based method is generally larger than the claimed value. On the other hand, one of the binomial distribution-based methods, that is, the standard method suggested in classical textbooks, appears to have smaller simulated cps than the nominal level. Two alternatives to the standard method are found to maintain their simulated cps sufficiently close to the claimed level, and hence their performances are judged to be satisfactory. In addition, three examples are given to illustrate the application of the proposed methods. 相似文献
19.
The importance of the dispersion parameter in counts occurring in toxicology, biology, clinical medicine, epidemiology, and other similar studies is well known. A couple of procedures for the construction of confidence intervals (CIs) of the dispersion parameter have been investigated, but little attention has been paid to the accuracy of its CIs. In this paper, we introduce the profile likelihood (PL) approach and the hybrid profile variance (HPV) approach for constructing the CIs of the dispersion parameter for counts based on the negative binomial model. The non-parametric bootstrap (NPB) approach based on the maximum likelihood (ML) estimates of the dispersion parameter is also considered. We then compare our proposed approaches with an asymptotic approach based on the ML and the restricted ML (REML) estimates of the dispersion parameter as well as the parametric bootstrap (PB) approach based on the ML estimates of the dispersion parameter. As assessed by Monte Carlo simulations, the PL approach has the best small-sample performance, followed by the REML, HPV, NPB, and PB approaches. Three examples to biological count data are presented. 相似文献
20.
Consider the problem of obtaining a confidence interval for some function g(θ) of an unknown parameter θ, for which a (1-α)-confidence
interval is given. If g(θ) is one-to-one the solution is immediate. However, if g is not one-to-one the problem is more complex
and depends on the structure of g. In this note the situation where g is a nonmonotone convex function is considered. Based
on some inequality, a confidence interval for g(θ) with confidence level at least 1-α is obtained from the given (1-α) confidence
interval on θ. Such a result is then applied to the n(μ, σ
2) distribution with σ known. It is shown that the coverage probability of the resulting confidence interval, while being greater
than 1-α, has in addition an upper bound which does not exceed Θ(3z1−α/2)-α/2. 相似文献