首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years, high failure rates in phase III trials were observed. One of the main reasons is overoptimistic assumptions for the planning of phase III resulting from limited phase II information and/or unawareness of realistic success probabilities. We present an approach for planning a phase II trial in a time‐to‐event setting that considers the whole phase II/III clinical development programme. We derive stopping boundaries after phase II that minimise the number of events under side conditions for the conditional probabilities of correct go/no‐go decision after phase II as well as the conditional success probabilities for phase III. In addition, we give general recommendations for the choice of phase II sample size. Our simulations show that unconditional probabilities of go/no‐go decision as well as the unconditional success probabilities for phase III are influenced by the number of events observed in phase II. However, choosing more than 150 events in phase II seems not necessary as the impact on these probabilities then becomes quite small. We recommend considering aspects like the number of compounds in phase II and the resources available when determining the sample size. The lower the number of compounds and the lower the resources are for phase III, the higher the investment for phase II should be. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Although the statistical methods enabling efficient adaptive seamless designs are increasingly well established, it is important to continue to use the endpoints and specifications that best suit the therapy area and stage of development concerned when conducting such a trial. Approaches exist that allow adaptive designs to continue seamlessly either in a subpopulation of patients or in the whole population on the basis of data obtained from the first stage of a phase II/III design: our proposed design adds extra flexibility by also allowing the trial to continue in all patients but with both the subgroup and the full population as co-primary populations. Further, methodology is presented which controls the Type-I error rate at less than 2.5% when the phase II and III endpoints are different but correlated time-to-event endpoints. The operating characteristics of the design are described along with a discussion of the practical aspects in an oncology setting.  相似文献   

3.
In drug development, after completion of phase II proof‐of‐concept trials, the sponsor needs to make a go/no‐go decision to start expensive phase III trials. The probability of statistical success (PoSS) of the phase III trials based on data from earlier studies is an important factor in that decision‐making process. Instead of statistical power, the predictive power of a phase III trial, which takes into account the uncertainty in the estimation of treatment effect from earlier studies, has been proposed to evaluate the PoSS of a single trial. However, regulatory authorities generally require statistical significance in two (or more) trials for marketing licensure. We show that the predictive statistics of two future trials are statistically correlated through use of the common observed data from earlier studies. Thus, the joint predictive power should not be evaluated as a simplistic product of the predictive powers of the individual trials. We develop the relevant formulae for the appropriate evaluation of the joint predictive power and provide numerical examples. Our methodology is further extended to the more complex phase III development scenario comprising more than two (K > 2) trials, that is, the evaluation of the PoSS of at least k0 () trials from a program of K total trials. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, we propose a design that uses a short‐term endpoint for accelerated approval at interim analysis and a long‐term endpoint for full approval at final analysis with sample size adaptation based on the long‐term endpoint. Two sample size adaptation rules are compared: an adaptation rule to maintain the conditional power at a prespecified level and a step function type adaptation rule to better address the bias issue. Three testing procedures are proposed: alpha splitting between the two endpoints; alpha exhaustive between the endpoints; and alpha exhaustive with improved critical value based on correlation. Family‐wise error rate is proved to be strongly controlled for the two endpoints, sample size adaptation, and two analysis time points with the proposed designs. We show that using alpha exhaustive designs greatly improve the power when both endpoints are effective, and the power difference between the two adaptation rules is minimal. The proposed design can be extended to more general settings. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A late‐stage clinical development program typically contains multiple trials. Conventionally, the program's success or failure may not be known until the completion of all trials. Nowadays, interim analyses are often used to allow evaluation for early success and/or futility for each individual study by calculating conditional power, predictive power and other indexes. It presents a good opportunity for us to estimate the probability of program success (POPS) for the entire clinical development earlier. The sponsor may abandon the program early if the estimated POPS is very low and therefore permit resource savings and reallocation to other products. We provide a method to calculate probability of success (POS) at an individual study level and also POPS for clinical programs with multiple trials in binary outcomes. Methods for calculating variation and confidence measures of POS and POPS and timing for interim analysis will be discussed and evaluated through simulations. We also illustrate our approaches on historical data retrospectively from a completed clinical program for depression. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
The probability of success or average power describes the potential of a future trial by weighting the power with a probability distribution of the treatment effect. The treatment effect estimate from a previous trial can be used to define such a distribution. During the development of targeted therapies, it is common practice to look for predictive biomarkers. The consequence is that the trial population for phase III is often selected on the basis of the most extreme result from phase II biomarker subgroup analyses. In such a case, there is a tendency to overestimate the treatment effect. We investigate whether the overestimation of the treatment effect estimate from phase II is transformed into a positive bias for the probability of success for phase III. We simulate a phase II/III development program for targeted therapies. This simulation allows to investigate selection probabilities and allows to compare the estimated with the true probability of success. We consider the estimated probability of success with and without subgroup selection. Depending on the true treatment effects, there is a negative bias without selection because of the weighting by the phase II distribution. In comparison, selection increases the estimated probability of success. Thus, selection does not lead to a bias in probability of success if underestimation due to the phase II distribution and overestimation due to selection cancel each other out. We recommend to perform similar simulations in practice to get the necessary information about the risk and chances associated with such subgroup selection designs.  相似文献   

7.
The success rate of drug development has been declined dramatically in recent years and the current paradigm of drug development is no longer functioning. It requires a major undertaking on breakthrough strategies and methodology for designs to minimize sample sizes and to shorten duration of the development. We propose an alternative phase II/III design based on continuous efficacy endpoints, which consists of two stages: a selection stage and a confirmation stage. For the selection stage, a randomized parallel design with several doses with a placebo group is employed for selection of doses. After the best dose is chosen, the patients of the selected dose group and placebo group continue to enter the confirmation stage. New patients will also be recruited and randomized to receive the selected dose or placebo group. The final analysis is performed with the cumulative data of patients from both stages. With the pre‐specified probabilities of rejecting the drug at each stage, sample sizes and critical values for both stages can be determined. As it is a single trial with controlling overall type I and II error rates, the proposed phase II/III adaptive design may not only reduce the sample size but also improve the success rate. An example illustrates the applications of the proposed phase II/III adaptive design. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
For two‐arm randomized phase II clinical trials, previous literature proposed an optimal design that minimizes the total sample sizes subject to multiple constraints on the standard errors of the estimated event rates and their difference. The original design is limited to trials with dichotomous endpoints. This paper extends the original approach to be applicable to phase II clinical trials with endpoints from the exponential dispersion family distributions. The proposed optimal design minimizes the total sample sizes needed to provide estimates of population means of both arms and their difference with pre‐specified precision. Its applications on data from specific distribution families are discussed under multiple design considerations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
For the cancer clinical trials with immunotherapy and molecularly targeted therapy, time-to-event endpoint is often a desired endpoint. In this paper, we present an event-driven approach for Bayesian one-stage and two-stage single-arm phase II trial designs. Two versions of Bayesian one-stage designs were proposed with executable algorithms and meanwhile, we also develop theoretical relationships between the frequentist and Bayesian designs. These findings help investigators who want to design a trial using Bayesian approach have an explicit understanding of how the frequentist properties can be achieved. Moreover, the proposed Bayesian designs using the exact posterior distributions accommodate the single-arm phase II trials with small sample sizes. We also proposed an optimal two-stage approach, which can be regarded as an extension of Simon's two-stage design with the time-to-event endpoint. Comprehensive simulations were conducted to explore the frequentist properties of the proposed Bayesian designs and an R package BayesDesign can be assessed via R CRAN for convenient use of the proposed methods.  相似文献   

10.
Single-arm one- or multi-stage study designs are commonly used in phase II oncology development when the primary outcome of interest is tumor response, a binary variable. Both two- and three-outcome designs are available. Simon two-stage design is a well-known example of two-outcome designs. The objective of a two-outcome trial is to reject either the null hypothesis that the objective response rate (ORR) is less than or equal to a pre-specified low uninteresting rate or to reject the alternative hypothesis that the ORR is greater than or equal to some target rate. Three-outcome designs proposed by Sargent et al. allow a middle gray decision zone which rejects neither hypothesis in order to reduce the required study size. We propose new two- and three-outcome designs with continual monitoring based on Bayesian posterior probability that meet frequentist specifications such as type I and II error rates. Futility and/or efficacy boundaries are based on confidence functions, which can require higher levels of evidence for early versus late stopping and have clear and intuitive interpretations. We search in a class of such procedures for optimal designs that minimize a given loss function such as average sample size under the null hypothesis. We present several examples and compare our design with other procedures in the literature and show that our design has good operating characteristics.  相似文献   

11.
In Clinical trials involving multiple comparisons of interest, the importance of controlling the trial Type I error is well-understood and well-documented. Moreover, when these comparisons are themselves correlated, methodologies exist for accounting for the correlation in the trial design, when calculating the trial significance levels. However, less well-documented is the fact that there are some circumstances where multiple comparisons affect the Type II error rather than the Type I error, and failure to account for this, can result in a reduction in the overall trial power. In this paper, we describe sample size calculations for clinical trials involving multiple correlated comparisons, where all the comparisons must be statistically significant for the trial to provide evidence of effect, and show how such calculations have to account for multiplicity in the Type II error. For the situation of two comparisons, we provide a result which assumes a bivariate Normal distribution. For the general case of two or more comparisons we provide a solution using inflation factors to increase the sample size relative to the case of a single outcome. We begin with a simple case of two comparisons assuming a bivariate Normal distribution, show how to factor in correlation between comparisons and then generalise our findings to situations with two or more comparisons. These methods are easy to apply, and we demonstrate how accounting for the multiplicity in the Type II error leads, at most, to modest increases in the sample size.  相似文献   

12.
Phase II clinical trials investigate whether a new drug or treatment has sufficient evidence of effectiveness against the disease under study. Two-stage designs are popular for phase II since they can stop in the first stage if the drug is ineffective. Investigators often face difficulties in determining the target response rates, and adaptive designs can help to set the target response rate tested in the second stage based on the number of responses observed in the first stage. Popular adaptive designs consider two alternate response rates, and they generally minimise the expected sample size at the maximum uninterested response rate. Moreover, these designs consider only futility as the reason for early stopping and have high expected sample sizes if the provided drug is effective. Motivated by this problem, we propose an adaptive design that enables us to terminate the single-arm trial at the first stage for efficacy and conclude which alternate response rate to choose. Comparing the proposed design with a popular adaptive design from literature reveals that the expected sample size decreases notably if any of the two target response rates are correct. In contrast, the expected sample size remains almost the same under the null hypothesis.  相似文献   

13.
Many new anticancer agents can be combined with existing drugs, as combining a number of drugs may be expected to have a better therapeutic effect than monotherapy owing to synergistic effects. Furthermore, to drive drug development and to reduce the associated cost, there has been a growing tendency to combine these as phase I/II trials. With respect to phase I/II oncology trials for the assessment of dose combinations, in the existing methodologies in which efficacy based on tumor response and safety based on toxicity are modeled as binary outcomes, it is not possible to enroll and treat the next cohort of patients unless the best overall response has been determined in the current cohort. Thus, the trial duration might be potentially extended to an unacceptable degree. In this study, we proposed a method that randomizes the next cohort of patients in the phase II part to the dose combination based on the estimated response rate using all the available observed data upon determination of the overall response in the current cohort. We compared the proposed method to the existing method using simulation studies. These demonstrated that the percentage of optimal dose combinations selected in the proposed method is not less than that in the existing method and that the trial duration in the proposed method is shortened compared to that in the existing method. The proposed method meets both ethical and financial requirements, and we believe it has the potential to contribute to expedite drug development.  相似文献   

14.
The large number of failures in phase III clinical trials, which occur at a rate of approximately 45%, is studied herein relative to possible countermeasures. First, the phenomenon of failures is numerically described. Second, the main reasons for failures are reported, together with some generic improvements suggested in the related literature. This study shows how statistics explain, but do not justify, the high failure rate observed. The rate of failures due to a lack of efficacy that are not expected, is considered to be at least 10%. Expanding phase II is the simplest and most intuitive way to reduce phase III failures since it can reduce phase III false negative findings and launches of phase III trials when the treatment is positive but suboptimal. Moreover, phase II enlargement is discussed using an economic profile. As resources for research are often limited, enlarging phase II should be evaluated on a case‐by‐case basis. Alternative strategies, such as biomarker‐based enrichments and adaptive designs, may aid in reducing failures. However, these strategies also have very low application rates with little likelihood of rapid growth.  相似文献   

15.
In studies with recurrent event endpoints, misspecified assumptions of event rates or dispersion can lead to underpowered trials or overexposure of patients. Specification of overdispersion is often a particular problem as it is usually not reported in clinical trial publications. Changing event rates over the years have been described for some diseases, adding to the uncertainty in planning. To mitigate the risks of inadequate sample sizes, internal pilot study designs have been proposed with a preference for blinded sample size reestimation procedures, as they generally do not affect the type I error rate and maintain trial integrity. Blinded sample size reestimation procedures are available for trials with recurrent events as endpoints. However, the variance in the reestimated sample size can be considerable in particular with early sample size reviews. Motivated by a randomized controlled trial in paediatric multiple sclerosis, a rare neurological condition in children, we apply the concept of blinded continuous monitoring of information, which is known to reduce the variance in the resulting sample size. Assuming negative binomial distributions for the counts of recurrent relapses, we derive information criteria and propose blinded continuous monitoring procedures. The operating characteristics of these are assessed in Monte Carlo trial simulations demonstrating favourable properties with regard to type I error rate, power, and stopping time, ie, sample size.  相似文献   

16.
When a candidate predictive marker is available, but evidence on its predictive ability is not sufficiently reliable, all‐comers trials with marker stratification are frequently conducted. We propose a framework for planning and evaluating prospective testing strategies in confirmatory, phase III marker‐stratified clinical trials based on a natural assumption on heterogeneity of treatment effects across marker‐defined subpopulations, where weak rather than strong control is permitted for multiple population tests. For phase III marker‐stratified trials, it is expected that treatment efficacy is established in a particular patient population, possibly in a marker‐defined subpopulation, and that the marker accuracy is assessed when the marker is used to restrict the indication or labelling of the treatment to a marker‐based subpopulation, ie, assessment of the clinical validity of the marker. In this paper, we develop statistical testing strategies based on criteria that are explicitly designated to the marker assessment, including those examining treatment effects in marker‐negative patients. As existing and developed statistical testing strategies can assert treatment efficacy for either the overall patient population or the marker‐positive subpopulation, we also develop criteria for evaluating the operating characteristics of the statistical testing strategies based on the probabilities of asserting treatment efficacy across marker subpopulations. Numerical evaluations to compare the statistical testing strategies based on the developed criteria are provided.  相似文献   

17.
In the usual design and analysis of a phase II trial, there is no differentiation between complete response and partial response. Since complete response is considered more desirable this paper proposes a weighted score method which extends Simon's (1989) two-stage design to the situation where the complete and partial responses are differentiated. The weight assigned to the complete response is suggested by examining the likelihood ratio (LR) statistic for testing a simple hypothesis of a trinomial distribution. Both optimal and minimax designs are tabulated for a wide range of design parameters. The weighted score approach is shown to give more efficient designs, especially when the response probability is moderate to large.  相似文献   

18.
Treatment during cancer clinical trials sometimes involves the combination of multiple drugs. In addition, in recent years there has been a trend toward phase I/II trials in which a phase I and a phase II trial are combined into a single trial to accelerate drug development. Methods for the seamless combination of phases I and II parts are currently under investigation. In the phase II part, adaptive randomization on the basis of patient efficacy outcomes allocates more patients to the dose combinations considered to have higher efficacy. Patient toxicity outcomes are used for determining admissibility to each dose combination and are not used for selection of the dose combination itself. In cases where the objective is not to find the optimum dose combination solely for efficacy but regarding both toxicity and efficacy, the need exists to allocate patients to dose combinations with consideration of the balance of existing trade‐offs between toxicity and efficacy. We propose a Bayesian hierarchical model and an adaptive randomization with consideration for the relationship with toxicity and efficacy. Using the toxicity and efficacy outcomes of patients, the Bayesian hierarchical model is used to estimate the toxicity probability and efficacy probability in each of the dose combinations. Here, we use Bayesian moving‐reference adaptive randomization on the basis of desirability computed from the obtained estimator. Computer simulations suggest that the proposed method will likely recommend a higher percentage of target dose combinations than a previously proposed method.  相似文献   

19.
In recent years, seamless phase I/II clinical trials have drawn much attention, as they consider both toxicity and efficacy endpoints in finding an optimal dose (OD). Engaging an appropriate number of patients in a trial is a challenging task. This paper attempts a dynamic stopping rule to save resources in phase I/II trials. That is, the stopping rule aims to save patients from unnecessary toxic or subtherapeutic doses. We allow a trial to stop early when widths of the confidence intervals for the dose-response parameters become narrower or when the sample size is equal to a predefined size, whichever comes first. The simulation study of dose-response scenarios in various settings demonstrates that the proposed stopping rule can engage an appropriate number of patients. Therefore, we suggest its use in clinical trials.  相似文献   

20.
Statistical approaches for addressing multiplicity in clinical trials range from the very conservative (the Bonferroni method) to the least conservative the fixed sequence approach. Recently, several authors proposed methods that combine merits of the two extreme approaches. Wiens [2003. A fixed sequence Bonferroni procedure for testing multiple endpoints. Pharmaceutical Statist. 2003, 2, 211–215], for example, considered an extension of the Bonferroni approach where the type I error rate (α)(α) is allocated among the endpoints, however, testing proceeds in a pre-determined order allowing the type I error rate to be saved for later use as long as the null hypotheses are rejected. This leads to a higher power of the test in testing later null hypotheses. In this paper, we consider an extension of Wiens’ approach by taking into account correlations among endpoints for achieving higher flexibility in testing. We show strong control of the family-wise type I error rate for this extension and provide critical values and significance levels for testing up to three endpoints with equal correlations and show how to calculate them for other correlation structures. We also present results of a simulation experiment for comparing the power of the proposed method with those of Wiens’ and others. The results of this experiment show that the magnitude of the gain in power of the proposed method depends on the prospective ordering of testing of the endpoints, the magnitude of the treatment effects of the endpoints and the magnitude of correlation between endpoints. Finally, we consider applications of the proposed method for clinical trials with multiple time points and multiple doses, where correlations among endpoints frequently arise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号