首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years, global collaboration has become a conventional strategy for new drug development. To accelerate the development process and shorten approval time, the design of multi-regional clinical trials (MRCTs) incorporates subjects from many countries/regions around the world under the same protocol. After showing the overall efficacy of a drug in a global trial, one can also simultaneously evaluate the possibility of applying the overall trial results to all regions and subsequently support drug registration in each region. However, most of the recent approaches developed for the design and evaluation of MRCTs focus on establishing criteria to examine whether the overall results from the MRCT can be applied to a specific region. In this paper, we use the consistency criterion of Method 1 from the Japanese Ministry of Health, Labour and Welfare (MHLW) guidance to assess whether the overall results from the MRCT can be applied to all regions. Sample size determination for the MRCT is also provided to take all the consistency criteria from each individual region into account. Numerical examples are given to illustrate applications of the proposed approach.  相似文献   

2.
ABSTRACT

Recently, sponsors and regulatory authorities pay much attention on the multiregional trial because it can shorten the drug lag or the time lag for approval, simultaneous drug development, submission, and approval in the world. However, many studies have shown that genetic determinants may mediate variability among persons in response to a drug. Thus, some therapeutics benefit part of treated patients. It means that the assumption of homogeneous effect size is not suitable for multiregional trials. In this paper, we conduct the sample size determination of a multiregional clinical trial calculated by fixed effect and random effect under the assumption of heterogeneous effect size. The performances of fixed effect and random effect on allocating sample size on a specific region are compared by statistical criteria for consistency between the region of interest and overall results.  相似文献   

3.
To accelerate the drug development process and shorten approval time, the design of multiregional clinical trials (MRCTs) incorporates subjects from many countries/regions around the world under the same protocol. After showing the overall efficacy of a drug in all global regions, one can also simultaneously evaluate the possibility of applying the overall trial results to all regions and subsequently support drug registration in each of them. In this paper, we focus on a specific region and establish a statistical criterion to assess the consistency between the specific region and overall results in an MRCT. More specifically, we treat each region in an MRCT as an independent clinical trial, and each perhaps has different treatment effect. We then construct the empirical prior information for the treatment effect for the specific region on the basis of all of the observed data from other regions. We will conclude similarity between the specific region and all regions if the posterior probability of deriving a positive treatment effect in the specific region is large, say 80%. Numerical examples illustrate applications of the proposed approach in different scenarios. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Ⅰ期临床试验的主要目的是探索药物毒性最大耐受剂量MTD,而MTD估计的准确与否将影响之后的Ⅱ期和Ⅲ期临床试验研究的结果.抗肿瘤药物Ⅰ期试验的特点是直接对病人进行试验,且样本量较小,这对构造估计精确度高并具有安全性保障要求的统计设计方法提出了挑战.回顾三种常用的Ⅰ期试验设计方法有:3+3设计、CRM设计和mTPI设计.3+3设计是应用较为广泛的传统方法,后两者是当前常用的贝叶斯自适应试验设计方法.通过大量模拟研究对三种方法从最优分配、安全性和估计MTD精确性三方面给以全面考察,并结合中国实际得出mTPI设计是比较适合推荐的Ⅰ期临床试验设计方法的结论.  相似文献   

5.
Multi-regional clinical trial (MRCT) is an efficient design to accelerate drug approval globally. Once the global efficacy of test drug is demonstrated, each local regulatory agency is required to prove effectiveness of test drug in their own population. Meanwhile, the ICH E5/E17 guideline recommends using data from other regions to help evaluate regional drug efficacy. However, one of the most challenges is how to manage to bridge data among multiple regions in an MRCT since various intrinsic and extrinsic factors exist among the participating regions. Furthermore, it is critical for a local agency to determine the proportion of information borrowing from other regions given the ethnic differences between target region and non-target regions. To address these issues, we propose a discounting factor weighted Z statistic to adaptively borrow information from non-target regions. In this weighted Z statistic, the weight is derived from a discounting factor in which the discounting factor denotes the proportion of information borrowing from non-target regions. We consider three ways to construct discounting factors based on the degree of congruency between target and non-target regions either using control group data, or treatment group data, or all data. We use the calibrated power prior to construct discounting factor based on scaled Kolmogorov–Smirnov statistic. Comprehensive simulation studies show that our method has desirable operating characteristics. Two examples are used to illustrate the applications of our proposed approach.  相似文献   

6.
For the time-to-event outcome, current methods for sample determination are based on the proportional hazard model. However, if the proportionality assumption fails to capture the relationship between the hazard time and covariates, the proportional hazard model is not suitable to analyze survival data. The accelerated failure time (AFT) model is an alternative method to deal with survival data. In this paper, we address the issue that the relationship between the hazard time and the treatment effect is satisfied with the AFT model to design a multiregional trial. The log-rank test is employed to deal with the heterogeneous effect size among regions. The test statistic for the overall treatment effect is used to determine the total sample size for a multiregional trial, and the proposed criteria are used to rationalize partition sample size to each region.  相似文献   

7.
To shorten the drug lag or the time lag for approval, simultaneous drug development, submission, and approval in the world may be desirable. Recently, multi-regional trials have attracted much attention from sponsors as well as regulatory authorities. Current methods for sample determination are based on the assumption that true treatment effect is uniform across regions. However, unrecognized heterogeneity among patients as ethnic or genetic factor will effect patients’ survival. In this article, we address the issue that the treatment effects with unrecognized heterogeneity that interacts with treatment are among regions to design a multi-regional trial. The log-rank test is employed to deal with the heterogeneous effect size among regions. The test statistic for the overall treatment effect is used to determine the total sample size for a multi-regional trial and the consistent trend is used to rationalize partition for sample size to each region.  相似文献   

8.
Bioequivalence (BE) trials play an important role in drug development for demonstrating the BE between test and reference formulations. The key statistical analysis for BE trials is the use of two one‐sided tests (TOST), which is equivalent to showing that the 90% confidence interval of the relative bioavailability is within a given range. Power and sample size calculations for the comparison between one test formulation and the reference formulation has been intensively investigated, and tables and software are available for practical use. From a statistical and logistical perspective, it might be more efficient to test more than one formulation in a single trial. However, approaches for controlling the overall type I error may be required. We propose a method called multiplicity‐adjusted TOST (MATOST) combining multiple comparison adjustment approaches, such as Hochberg's or Dunnett's method, with TOST. Because power and sample size calculations become more complex and are difficult to solve analytically, efficient simulation‐based procedures for this purpose have been developed and implemented in an R package. Some numerical results for a range of scenarios are presented in the paper. We show that given the same overall type I error and power, a BE crossover trial designed to test multiple formulations simultaneously only requires a small increase in the total sample size compared with a simple 2 × 2 crossover design evaluating only one test formulation. Hence, we conclude that testing multiple formulations in a single study is generally an efficient approach. The R package MATOST is available at https://sites.google.com/site/matostbe/ . Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
We consider outcome adaptive phase II or phase II/III trials to identify the best treatment for further development. Different from many other multi-arm multi-stage designs, we borrow approaches for the best arm identification in multi-armed bandit (MAB) approaches developed for machine learning and adapt them for clinical trial purposes. The best arm identification in MAB focuses on the error rate of identification at the end of the trial, but we are also interested in the cumulative benefit of trial patients, for example, the frequency of patients treated with the best treatment. In particular, we consider Top-Two Thompson Sampling (TTTS) and propose an acceleration approach for better performance in drug development scenarios in which the sample size is much smaller than that considered in machine learning applications. We also propose a variant of TTTS (TTTS2) which is simpler, easier for implementation, and has comparable performance in small sample settings. An extensive simulation study was conducted to evaluate the performance of the proposed approach in multiple typical scenarios in drug development.  相似文献   

10.
A bridging study defined by ICH E5 is usually conducted in the new region after the test product has been approved for commercial marketing in the original region due to its proven efficacy and safety. However, extensive duplication of clinical evaluation in the new region not only requires valuable development resources but also delay availability of the test product to the needed patients in the new regions. To shorten the drug lag or the time lag for approval, simultaneous drug development, submission, and approval in the world may be desirable. Recently, multi-regional trials have attracted much attention from sponsors as well as regulatory authorities. Current methods for sample determination are based on the assumption that true treatment effect is uniform across regions. However, unrecognized heterogeneity among patients as ethnic or genetic factor will effect patients’ survival. Using the simple log-rank test for analysis of treatment effect on survival in studies under heterogeneity may be severely underpowered. In this article, we address the issue that the treatment effects are different among regions to design a multi-regional trial. The optimal log-rank test is employed to deal with the heterogeneous effect size among regions. The test statistic for the overall treatment effect is used to determine the total sample size for a multi-regional trial and the consistent trend and the proposed criteria are used to rationalize partition sample size to each region.  相似文献   

11.
We discuss 3 alternative approaches to sample size calculation: traditional sample size calculation based on power to show a statistically significant effect, sample size calculation based on assurance, and sample size based on a decision‐theoretic approach. These approaches are compared head‐to‐head for clinical trial situations in rare diseases. Specifically, we consider 3 case studies of rare diseases (Lyell disease, adult‐onset Still disease, and cystic fibrosis) with the aim to plan the sample size for an upcoming clinical trial. We outline in detail the reasonable choice of parameters for these approaches for each of the 3 case studies and calculate sample sizes. We stress that the influence of the input parameters needs to be investigated in all approaches and recommend investigating different sample size approaches before deciding finally on the trial size. Highly influencing for the sample size are choice of treatment effect parameter in all approaches and the parameter for the additional cost of the new treatment in the decision‐theoretic approach. These should therefore be discussed extensively.  相似文献   

12.
A bridging study defined by ICH E5 is usually conducted in the new region after the test product has been approved for commercial marketing in the original region due to its proven efficacy and safety. However, extensive duplication of clinical evaluation in the new region not only requires valuable development resources but also delay availability of the test product to the needed patients in the new regions. To shorten the drug lag or the time lag for approval, simultaneous drug development, submission, and approval in the world may be desirable. Recently, multi-regional trials have attracted much attention from sponsors as well as regulatory authorities. On September 28, 2007 Ministry of Health, Labour and Welfare of Japan . ( 2007 ). Basic Principles on Global Clinical Trials . [Google Scholar], the Ministry of Health, Labour and Welfare (MHLW) in Japan published the “Basic Principles on Global Clinical Trials” guidance related to the planning and implementation of global clinical studies. The 11th Q & A for the ICH E5 guideline also comments the concept of a multi-regional trial. Both guidelines have established a framework on how to demonstrate the efficacy of a drug in all participating regions while also evaluating the possibility of applying the overall trial results to each region by conducting a multi-regional trial. Kawai et al. (2008 Kawai , N. , Stein , C. , Komiyama , O. , Li , Y. ( 2008 ). An approach to rationalize partitioning sample size into individual regions in a multiregional trial . Drug Inform. J. 42 ( 2 ): 139147 .[Crossref], [Web of Science ®] [Google Scholar]) developed an approach to rationalize partitioning the total sample size among the regions so that a high probability of observing a consistent trend under the assumptions of the positive treatment effect and uniform across regions in a confirmatory multi-regional trial. Ko et al. (2010 Ko , F. S. , Tsou , H. H. , Liu , J. P. , Hsiao , C. F. ( 2010 ). An approach to rationalize partitioning sample size into individual regions in a multiregional trial . J. Biopharm. Statist. 20 ( 4 ): 870885 .[Taylor & Francis Online], [Web of Science ®] [Google Scholar]) focused on a specific region and establish statistical criteria for consistency between the region of interest and overall results. The sample size calculation for a specific region was also provided. These methods were based on the assumption that true effect size is uniform across regions. In this article, we address the issue that the treatment effects are different among regions to design a multi-regional trial. The random effect model is employed to deal with the heterogeneous effect size among regions. The test statistic for the overall treatment effect is also established and the consistent trend and the proposed criteria are used to rationalize partition sample size to each region.  相似文献   

13.
Phase II clinical trials investigate whether a new drug or treatment has sufficient evidence of effectiveness against the disease under study. Two-stage designs are popular for phase II since they can stop in the first stage if the drug is ineffective. Investigators often face difficulties in determining the target response rates, and adaptive designs can help to set the target response rate tested in the second stage based on the number of responses observed in the first stage. Popular adaptive designs consider two alternate response rates, and they generally minimise the expected sample size at the maximum uninterested response rate. Moreover, these designs consider only futility as the reason for early stopping and have high expected sample sizes if the provided drug is effective. Motivated by this problem, we propose an adaptive design that enables us to terminate the single-arm trial at the first stage for efficacy and conclude which alternate response rate to choose. Comparing the proposed design with a popular adaptive design from literature reveals that the expected sample size decreases notably if any of the two target response rates are correct. In contrast, the expected sample size remains almost the same under the null hypothesis.  相似文献   

14.
The primary objective of a multi-regional clinical trial is to investigate the overall efficacy of the drug across regions and evaluate the possibility of applying the overall trial result to some specific region. A challenge arises when there is not enough regional sample size. We focus on the problem of evaluating applicability of a drug to a specific region of interest under the criterion of preserving a certain proportion of the overall treatment effect in the region. We propose a variant of James-Stein shrinkage estimator in the empirical Bayes context for the region-specific treatment effect. The estimator has the features of accommodating the between-region variation and finiteness correction of bias. We also propose a truncated version of the proposed shrinkage estimator to further protect risk in the presence of extreme value of regional treatment effect. Based on the proposed estimator, we provide the consistency assessment criterion and sample size calculation for the region of interest. Simulations are conducted to demonstrate the performance of the proposed estimators in comparison with some existing methods. A hypothetical example is presented to illustrate the application of the proposed method.  相似文献   

15.
16.
The choice between single-arm designs versus randomized double-arm designs has been contentiously debated in the literature of phase II oncology trials. Recently, as a compromise, the single-to-double arm transition design was proposed, combining the two designs into one trial over two stages. Successful implementation of the two-stage transition design requires a suspension period at the end of the first stage to collect the response data of the already enrolled patients. When the evaluation of the primary efficacy endpoint is overly long, the between-stage suspension period may unfavorably prolong the trial duration and cause a delay in treating future eligible patients. To accelerate the trial, we propose a Bayesian single-to-double arm design with short-term endpoints (BSDS), where an intermediate short-term endpoint is used for making early termination decisions at the end of the single-arm stage, followed by an evaluation of the long-term endpoint at the end of the subsequent double-arm stage. Bayesian posterior probabilities are used as the primary decision-making tool at the end of the trial. Design calibration steps are proposed for this Bayesian monitoring process to control the frequentist operating characteristics and minimize the expected sample size. Extensive simulation studies have demonstrated that our design has comparable power and average sample size but a much shorter trial duration than conventional single-to-double arm design. Applications of the design are illustrated using two phase II oncology trials with binary endpoints.  相似文献   

17.
Sample size calculation is a critical issue in clinical trials because a small sample size leads to a biased inference and a large sample size increases the cost. With the development of advanced medical technology, some patients can be cured of certain chronic diseases, and the proportional hazards mixture cure model has been developed to handle survival data with potential cure information. Given the needs of survival trials with potential cure proportions, a corresponding sample size formula based on the log-rank test statistic for binary covariates has been proposed by Wang et al. [25]. However, a sample size formula based on continuous variables has not been developed. Herein, we presented sample size and power calculations for the mixture cure model with continuous variables based on the log-rank method and further modified it by Ewell's method. The proposed approaches were evaluated using simulation studies for synthetic data from exponential and Weibull distributions. A program for calculating necessary sample size for continuous covariates in a mixture cure model was implemented in R.  相似文献   

18.
Decision making is a critical component of a new drug development process. Based on results from an early clinical trial such as a proof of concept trial, the sponsor can decide whether to continue, stop, or defer the development of the drug. To simplify and harmonize the decision‐making process, decision criteria have been proposed in the literature. One of them is to exam the location of a confidence bar relative to the target value and lower reference value of the treatment effect. In this research, we modify an existing approach by moving some of the “stop” decision to “consider” decision so that the chance of directly terminating the development of a potentially valuable drug can be reduced. As Bayesian analysis has certain flexibilities and can borrow historical information through an inferential prior, we apply the Bayesian analysis to the trial planning and decision making. Via a design prior, we can also calculate the probabilities of various decision outcomes in relationship with the sample size and the other parameters to help the study design. An example and a series of computations are used to illustrate the applications, assess the operating characteristics, and compare the performances of different approaches.  相似文献   

19.
In this paper, we review the adaptive design methodology of Li et al. (Biostatistics 3 :277–287) for two‐stage trials with mid‐trial sample size adjustment. We argue that it is closer in principle to a group sequential design, in spite of its obvious adaptive element. Several extensions are proposed that aim to make it even more attractive and transparent alternative to a standard (fixed sample size) trial for funding bodies to consider. These enable a cap to be put on the maximum sample size and for the trial data to be analysed using standard methods at its conclusion. The regulatory view of trials incorporating unblinded sample size re‐estimation is also discussed. © 2014 The Authors. Pharmaceutical Statistics published by John Wiley & Sons, Ltd.  相似文献   

20.
Sample size calculations in clinical trials need to be based on profound parameter assumptions. Wrong parameter choices may lead to too small or too high sample sizes and can have severe ethical and economical consequences. Adaptive group sequential study designs are one solution to deal with planning uncertainties. Here, the sample size can be updated during an ongoing trial based on the observed interim effect. However, the observed interim effect is a random variable and thus does not necessarily correspond to the true effect. One way of dealing with the uncertainty related to this random variable is to include resampling elements in the recalculation strategy. In this paper, we focus on clinical trials with a normally distributed endpoint. We consider resampling of the observed interim test statistic and apply this principle to several established sample size recalculation approaches. The resulting recalculation rules are smoother than the original ones and thus the variability in sample size is lower. In particular, we found that some resampling approaches mimic a group sequential design. In general, incorporating resampling of the interim test statistic in existing sample size recalculation rules results in a substantial performance improvement with respect to a recently published conditional performance score.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号