首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conditional power calculations are frequently used to guide the decision whether or not to stop a trial for futility or to modify planned sample size. These ignore the information in short‐term endpoints and baseline covariates, and thereby do not make fully efficient use of the information in the data. We therefore propose an interim decision procedure based on the conditional power approach which exploits the information contained in baseline covariates and short‐term endpoints. We will realize this by considering the estimation of the treatment effect at the interim analysis as a missing data problem. This problem is addressed by employing specific prediction models for the long‐term endpoint which enable the incorporation of baseline covariates and multiple short‐term endpoints. We show that the proposed procedure leads to an efficiency gain and a reduced sample size, without compromising the Type I error rate of the procedure, even when the adopted prediction models are misspecified. In particular, implementing our proposal in the conditional power approach enables earlier decisions relative to standard approaches, whilst controlling the probability of an incorrect decision. This time gain results in a lower expected number of recruited patients in case of stopping for futility, such that fewer patients receive the futile regimen. We explain how these methods can be used in adaptive designs with unblinded sample size re‐assessment based on the inverse normal P‐value combination method to control Type I error. We support the proposal by Monte Carlo simulations based on data from a real clinical trial.  相似文献   

2.
Prior information is often incorporated informally when planning a clinical trial. Here, we present an approach on how to incorporate prior information, such as data from historical clinical trials, into the nuisance parameter–based sample size re‐estimation in a design with an internal pilot study. We focus on trials with continuous endpoints in which the outcome variance is the nuisance parameter. For planning and analyzing the trial, frequentist methods are considered. Moreover, the external information on the variance is summarized by the Bayesian meta‐analytic‐predictive approach. To incorporate external information into the sample size re‐estimation, we propose to update the meta‐analytic‐predictive prior based on the results of the internal pilot study and to re‐estimate the sample size using an estimator from the posterior. By means of a simulation study, we compare the operating characteristics such as power and sample size distribution of the proposed procedure with the traditional sample size re‐estimation approach that uses the pooled variance estimator. The simulation study shows that, if no prior‐data conflict is present, incorporating external information into the sample size re‐estimation improves the operating characteristics compared to the traditional approach. In the case of a prior‐data conflict, that is, when the variance of the ongoing clinical trial is unequal to the prior location, the performance of the traditional sample size re‐estimation procedure is in general superior, even when the prior information is robustified. When considering to include prior information in sample size re‐estimation, the potential gains should be balanced against the risks.  相似文献   

3.
We address the problem of the curtailment or continuation of an experiment or trial at some interim point where say N observations are in hand and at least S > N observations had originally been scheduled for a decision. A Bayesian predictive approach is used to determine the probability that if one continued the trial with a further sample of size M where N +MS, one would come to a particular decision regarding a parameter or a future observable. This point of view can also be applied to significance tests if one is willing to admit the calculation as a subjective assessment.  相似文献   

4.
In recent years, high failure rates in phase III trials were observed. One of the main reasons is overoptimistic assumptions for the planning of phase III resulting from limited phase II information and/or unawareness of realistic success probabilities. We present an approach for planning a phase II trial in a time‐to‐event setting that considers the whole phase II/III clinical development programme. We derive stopping boundaries after phase II that minimise the number of events under side conditions for the conditional probabilities of correct go/no‐go decision after phase II as well as the conditional success probabilities for phase III. In addition, we give general recommendations for the choice of phase II sample size. Our simulations show that unconditional probabilities of go/no‐go decision as well as the unconditional success probabilities for phase III are influenced by the number of events observed in phase II. However, choosing more than 150 events in phase II seems not necessary as the impact on these probabilities then becomes quite small. We recommend considering aspects like the number of compounds in phase II and the resources available when determining the sample size. The lower the number of compounds and the lower the resources are for phase III, the higher the investment for phase II should be. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
In some exceptional circumstances, as in very rare diseases, nonrandomized one‐arm trials are the sole source of evidence to demonstrate efficacy and safety of a new treatment. The design of such studies needs a sound methodological approach in order to provide reliable information, and the determination of the appropriate sample size still represents a critical step of this planning process. As, to our knowledge, no method exists for sample size calculation in one‐arm trials with a recurrent event endpoint, we propose here a closed sample size formula. It is derived assuming a mixed Poisson process, and it is based on the asymptotic distribution of the one‐sample robust nonparametric test recently developed for the analysis of recurrent events data. The validity of this formula in managing a situation with heterogeneity of event rates, both in time and between patients, and time‐varying treatment effect was demonstrated with exhaustive simulation studies. Moreover, although the method requires the specification of a process for events generation, it seems to be robust under erroneous definition of this process, provided that the number of events at the end of the study is similar to the one assumed in the planning phase. The motivating clinical context is represented by a nonrandomized one‐arm study on gene therapy in a very rare immunodeficiency in children (ADA‐SCID), where a major endpoint is the recurrence of severe infections. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Assuming that the frequency of occurrence follows the Poisson distribution, we develop sample size calculation procedures for testing equality based on an exact test procedure and an asymptotic test procedure under an AB/BA crossover design. We employ Monte Carlo simulation to demonstrate the use of these sample size formulae and evaluate the accuracy of sample size calculation formula derived from the asymptotic test procedure with respect to power in a variety of situations. We note that when both the relative treatment effect of interest and the underlying intraclass correlation between frequencies within patients are large, the sample size calculation based on the asymptotic test procedure can lose accuracy. In this case, the sample size calculation procedure based on the exact test is recommended. On the other hand, if the relative treatment effect of interest is small, the minimum required number of patients per group will be large, and the asymptotic test procedure will be valid for use. In this case, we may consider use of the sample size calculation formula derived from the asymptotic test procedure to reduce the number of patients needed for the exact test procedure. We include an example regarding a double‐blind randomized crossover trial comparing salmeterol with a placebo in exacerbations of asthma to illustrate the practical use of these sample size formulae. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Response-adaptive (RA) allocation designs can skew the allocation of incoming subjects toward the better performing treatment group based on the previously accrued responses. While unstable estimators and increased variability can adversely affect adaptation in early trial stages, Bayesian methods can be implemented with decreasingly informative priors (DIP) to overcome these difficulties. DIPs have been previously used for binary outcomes to constrain adaptation early in the trial, yet gradually increase adaptation as subjects accrue. We extend the DIP approach to RA designs for continuous outcomes, primarily in the normal conjugate family by functionalizing the prior effective sample size to equal the unobserved sample size. We compare this effective sample size DIP approach to other DIP formulations. Further, we considered various allocation equations and assessed their behavior utilizing DIPs. Simulated clinical trials comparing the behavior of these approaches with traditional Frequentist and Bayesian RA as well as balanced designs show that the natural lead-in approaches maintain improved treatment with lower variability and greater power.  相似文献   

8.
Model‐based phase I dose‐finding designs rely on a single model throughout the study for estimating the maximum tolerated dose (MTD). Thus, one major concern is about the choice of the most suitable model to be used. This is important because the dose allocation process and the MTD estimation depend on whether or not the model is reliable, or whether or not it gives a better fit to toxicity data. The aim of our work was to propose a method that would remove the need for a model choice prior to the trial onset and then allow it sequentially at each patient's inclusion. In this paper, we described model checking approach based on the posterior predictive check and model comparison approach based on the deviance information criterion, in order to identify a more reliable or better model during the course of a trial and to support clinical decision making. Further, we presented two model switching designs for a phase I cancer trial that were based on the aforementioned approaches, and performed a comparison between designs with or without model switching, through a simulation study. The results showed that the proposed designs had the advantage of decreasing certain risks, such as those of poor dose allocation and failure to find the MTD, which could occur if the model is misspecified. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
With the development of molecular targeted drugs, predictive biomarkers have played an increasingly important role in identifying patients who are likely to receive clinically meaningful benefits from experimental drugs (i.e., sensitive subpopulation) even in early clinical trials. For continuous biomarkers, such as mRNA levels, it is challenging to determine cutoff value for the sensitive subpopulation, and widely accepted study designs and statistical approaches are not currently available. In this paper, we propose the Bayesian adaptive patient enrollment restriction (BAPER) approach to identify the sensitive subpopulation while restricting enrollment of patients from the insensitive subpopulation based on the results of interim analyses, in a randomized phase 2 trial with time‐to‐endpoint outcome and a single biomarker. Applying a four‐parameter change‐point model to the relationship between the biomarker and hazard ratio, we calculate the posterior distribution of the cutoff value that exhibits the target hazard ratio and use it for the restriction of the enrollment and the identification of the sensitive subpopulation. We also consider interim monitoring rules for termination because of futility or efficacy. Extensive simulations demonstrated that our proposed approach reduced the number of enrolled patients from the insensitive subpopulation, relative to an approach with no enrollment restriction, without reducing the likelihood of a correct decision for next trial (no‐go, go with entire population, or go with sensitive subpopulation) or correct identification of the sensitive subpopulation. Additionally, the four‐parameter change‐point model had a better performance over a wide range of simulation scenarios than a commonly used dichotomization approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, we investigate the performance of different parametric and nonparametric approaches for analyzing overdispersed person–time–event rates in the clinical trial setting. We show that the likelihood‐based parametric approach may not maintain the right size for the tested overdispersed person–time–event data. The nonparametric approaches may use an estimator as either the mean of the ratio of number of events over follow‐up time within each subjects or the ratio of the mean of the number of events over the mean follow‐up time in all the subjects. Among these, the ratio of the means is a consistent estimator and can be studied analytically. Asymptotic properties of all estimators were studied through numerical simulations. This research shows that the nonparametric ratio of the mean estimator is to be recommended in analyzing overdispersed person–time data. When sample size is small, some resampling‐based approaches can yield satisfactory results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper we consider a Bayesian predictive approach to sample size determination in equivalence trials. Equivalence experiments are conducted to show that the unknown difference between two parameters is small. For instance, in clinical practice this kind of experiment aims to determine whether the effects of two medical interventions are therapeutically similar. We declare an experiment successful if an interval estimate of the effects‐difference is included in a set of values of the parameter of interest indicating a negligible difference between treatment effects (equivalence interval). We derive two alternative criteria for the selection of the optimal sample size, one based on the predictive expectation of the interval limits and the other based on the predictive probability that these limits fall in the equivalence interval. Moreover, for both criteria we derive a robust version with respect to the choice of the prior distribution. Numerical results are provided and an application is illustrated when the normal model with conjugate prior distributions is assumed.  相似文献   

12.
Sample size calculations in clinical trials need to be based on profound parameter assumptions. Wrong parameter choices may lead to too small or too high sample sizes and can have severe ethical and economical consequences. Adaptive group sequential study designs are one solution to deal with planning uncertainties. Here, the sample size can be updated during an ongoing trial based on the observed interim effect. However, the observed interim effect is a random variable and thus does not necessarily correspond to the true effect. One way of dealing with the uncertainty related to this random variable is to include resampling elements in the recalculation strategy. In this paper, we focus on clinical trials with a normally distributed endpoint. We consider resampling of the observed interim test statistic and apply this principle to several established sample size recalculation approaches. The resulting recalculation rules are smoother than the original ones and thus the variability in sample size is lower. In particular, we found that some resampling approaches mimic a group sequential design. In general, incorporating resampling of the interim test statistic in existing sample size recalculation rules results in a substantial performance improvement with respect to a recently published conditional performance score.  相似文献   

13.
Decision making is a critical component of a new drug development process. Based on results from an early clinical trial such as a proof of concept trial, the sponsor can decide whether to continue, stop, or defer the development of the drug. To simplify and harmonize the decision‐making process, decision criteria have been proposed in the literature. One of them is to exam the location of a confidence bar relative to the target value and lower reference value of the treatment effect. In this research, we modify an existing approach by moving some of the “stop” decision to “consider” decision so that the chance of directly terminating the development of a potentially valuable drug can be reduced. As Bayesian analysis has certain flexibilities and can borrow historical information through an inferential prior, we apply the Bayesian analysis to the trial planning and decision making. Via a design prior, we can also calculate the probabilities of various decision outcomes in relationship with the sample size and the other parameters to help the study design. An example and a series of computations are used to illustrate the applications, assess the operating characteristics, and compare the performances of different approaches.  相似文献   

14.
Sample size planning is an important design consideration for a phase 3 trial. In this paper, we consider how to improve this planning when using data from phase 2 trials. We use an approach based on the concept of assurance. We consider adjusting phase 2 results because of two possible sources of bias. The first source arises from selecting compounds with pre‐specified favourable phase 2 results and using these favourable results as the basis of treatment effect for phase 3 sample size planning. The next source arises from projecting phase 2 treatment effect to the phase 3 population when this projection is optimistic because of a generally more heterogeneous patient population at the confirmatory stage. In an attempt to reduce the impact of these two sources of bias, we adjust (discount) the phase 2 estimate of treatment effect. We consider multiplicative and additive adjustment. Following a previously proposed concept, we consider the properties of several criteria, termed launch criteria, for deciding whether or not to progress development to phase 3. We use simulations to investigate launch criteria with or without bias adjustment for the sample size calculation under various scenarios. The simulation results are supplemented with empirical evidence to support the need to discount phase 2 results when the latter are used in phase 3 planning. Finally, we offer some recommendations based on both the simulations and the empirical investigations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
This paper studies the notion of coherence in interval‐based dose‐finding methods. An incoherent decision is either (a) a recommendation to escalate the dose following an observed dose‐limiting toxicity or (b) a recommendation to deescalate the dose following a non–dose‐limiting toxicity. In a simulated example, we illustrate that the Bayesian optimal interval method and the Keyboard method are not coherent. We generated dose‐limiting toxicity outcomes under an assumed set of true probabilities for a trial of n=36 patients in cohorts of size 1, and we counted the number of incoherent dosing decisions that were made throughout this simulated trial. Each of the methods studied resulted in 13/36 (36%) incoherent decisions in the simulated trial. Additionally, for two different target dose‐limiting toxicity rates, 20% and 30%, and a sample size of n=30 patients, we randomly generated 100 dose‐toxicity curves and tabulated the number of incoherent decisions made by each method in 1000 simulated trials under each curve. For each method studied, the probability of incurring at least one incoherent decision during the conduct of a single trial is greater than 75%. Coherency is an important principle in the conduct of dose‐finding trials. Interval‐based methods violate this principle for cohorts of size 1 and require additional modifications to overcome this shortcoming. Researchers need to take a closer look at the dose assignment behavior of interval‐based methods when using them to plan dose‐finding studies.  相似文献   

16.
Bioequivalence (BE) trials play an important role in drug development for demonstrating the BE between test and reference formulations. The key statistical analysis for BE trials is the use of two one‐sided tests (TOST), which is equivalent to showing that the 90% confidence interval of the relative bioavailability is within a given range. Power and sample size calculations for the comparison between one test formulation and the reference formulation has been intensively investigated, and tables and software are available for practical use. From a statistical and logistical perspective, it might be more efficient to test more than one formulation in a single trial. However, approaches for controlling the overall type I error may be required. We propose a method called multiplicity‐adjusted TOST (MATOST) combining multiple comparison adjustment approaches, such as Hochberg's or Dunnett's method, with TOST. Because power and sample size calculations become more complex and are difficult to solve analytically, efficient simulation‐based procedures for this purpose have been developed and implemented in an R package. Some numerical results for a range of scenarios are presented in the paper. We show that given the same overall type I error and power, a BE crossover trial designed to test multiple formulations simultaneously only requires a small increase in the total sample size compared with a simple 2 × 2 crossover design evaluating only one test formulation. Hence, we conclude that testing multiple formulations in a single study is generally an efficient approach. The R package MATOST is available at https://sites.google.com/site/matostbe/ . Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
In the traditional study design of a single‐arm phase II cancer clinical trial, the one‐sample log‐rank test has been frequently used. A common practice in sample size calculation is to assume that the event time in the new treatment follows exponential distribution. Such a study design may not be suitable for immunotherapy cancer trials, when both long‐term survivors (or even cured patients from the disease) and delayed treatment effect are present, because exponential distribution is not appropriate to describe such data and consequently could lead to severely underpowered trial. In this research, we proposed a piecewise proportional hazards cure rate model with random delayed treatment effect to design single‐arm phase II immunotherapy cancer trials. To improve test power, we proposed a new weighted one‐sample log‐rank test and provided a sample size calculation formula for designing trials. Our simulation study showed that the proposed log‐rank test performs well and is robust of misspecified weight and the sample size calculation formula also performs well.  相似文献   

18.
The problem of comparing several experimental treatments to a standard arises frequently in medical research. Various multi-stage randomized phase II/III designs have been proposed that select one or more promising experimental treatments and compare them to the standard while controlling overall Type I and Type II error rates. This paper addresses phase II/III settings where the joint goals are to increase the average time to treatment failure and control the probability of toxicity while accounting for patient heterogeneity. We are motivated by the desire to construct a feasible design for a trial of four chemotherapy combinations for treating a family of rare pediatric brain tumors. We present a hybrid two-stage design based on two-dimensional treatment effect parameters. A targeted parameter set is constructed from elicited parameter pairs considered to be equally desirable. Bayesian regression models for failure time and the probability of toxicity as functions of treatment and prognostic covariates are used to define two-dimensional covariate-adjusted treatment effect parameter sets. Decisions at each stage of the trial are based on the ratio of posterior probabilities of the alternative and null covariate-adjusted parameter sets. Design parameters are chosen to minimize expected sample size subject to frequentist error constraints. The design is illustrated by application to the brain tumor trial.  相似文献   

19.

Item response models are essential tools for analyzing results from many educational and psychological tests. Such models are used to quantify the probability of correct response as a function of unobserved examinee ability and other parameters explaining the difficulty and the discriminatory power of the questions in the test. Some of these models also incorporate a threshold parameter for the probability of the correct response to account for the effect of guessing the correct answer in multiple choice type tests. In this article we consider fitting of such models using the Gibbs sampler. A data augmentation method to analyze a normal-ogive model incorporating a threshold guessing parameter is introduced and compared with a Metropolis-Hastings sampling method. The proposed method is an order of magnitude more efficient than the existing method. Another objective of this paper is to develop Bayesian model choice techniques for model discrimination. A predictive approach based on a variant of the Bayes factor is used and compared with another decision theoretic method which minimizes an expected loss function on the predictive space. A classical model choice technique based on a modified likelihood ratio test statistic is shown as one component of the second criterion. As a consequence the Bayesian methods proposed in this paper are contrasted with the classical approach based on the likelihood ratio test. Several examples are given to illustrate the methods.  相似文献   

20.
Whittemore (1981) proposed an approach for calculating the sample size needed to test hypotheses with specified significance and power against a given alternative for logistic regression with small response probability. Based on the distribution of covariate, which could be either discrete or continuous, this approach first provides a simple closed-form approximation to the asymptotic covariance matrix of the maximum likelihood estimates, and then uses it to calculate the sample size needed to test a hypothesis about the parameter. Self et al. (1992) described a general approach for power and sample size calculations within the framework of generalized linear models, which include logistic regression as a special case. Their approach is based on an approximation to the distribution of the likelihood ratio statistic. Unlike the Whittemore approach, their approach is not limited to situations of small response probability. However, it is restricted to models with a finite number of covariate configurations. This study compares these two approaches to see how accurate they would be for the calculations of power and sample size in logistic regression models with various response probabilities and covariate distributions. The results indicate that the Whittemore approach has a slight advantage in achieving the nominal power only for one case with small response probability. It is outperformed for all other cases with larger response probabilities. In general, the approach proposed in Self et al. (1992) is recommended for all values of the response probability. However, its extension for logistic regression models with an infinite number of covariate configurations involves an arbitrary decision for categorization and leads to a discrete approximation. As shown in this paper, the examined discrete approximations appear to be sufficiently accurate for practical purpose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号