首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New approaches to prior specification and structuring in autoregressive time series models are introduced and developed. We focus on defining classes of prior distributions for parameters and latent variables related to latent components of an autoregressive model for an observed time series. These new priors naturally permit the incorporation of both qualitative and quantitative prior information about the number and relative importance of physically meaningful components that represent low frequency trends, quasi-periodic subprocesses and high frequency residual noise components of observed series. The class of priors also naturally incorporates uncertainty about model order and hence leads in posterior analysis to model order assessment and resulting posterior and predictive inferences that incorporate full uncertainties about model order as well as model parameters. Analysis also formally incorporates uncertainty and leads to inferences about unknown initial values of the time series, as it does for predictions of future values. Posterior analysis involves easily implemented iterative simulation methods, developed and described here. One motivating field of application is climatology, where the evaluation of latent structure, especially quasi-periodic structure, is of critical importance in connection with issues of global climatic variability. We explore the analysis of data from the southern oscillation index, one of several series that has been central in recent high profile debates in the atmospheric sciences about recent apparent trends in climatic indicators.  相似文献   

2.
The adequacy of a postulated generalized linear model can often be improved by transforming predictors and/or including additional explanatory variables. To assess the fit relative to a given predictor, we define its corresponding residual component. Asymptotic bias and variance of the residual component are considered, paying particular attention to the case that the presumed model is valid.  相似文献   

3.
Traditionally, time series analysis involves building an appropriate model and using either parametric or nonparametric methods to make inference about the model parameters. Motivated by recent developments for dimension reduction in time series, an empirical application of sufficient dimension reduction (SDR) to nonlinear time series modelling is shown in this article. Here, we use time series central subspace as a tool for SDR and estimate it using mutual information index. Especially, in order to reduce the computational complexity in time series, we propose an efficient estimation method of minimal dimension and lag using a modified Schwarz–Bayesian criterion, when either of the dimensions and the lags is unknown. Through simulations and real data analysis, the approach presented in this article performs well in autoregression and volatility estimation.  相似文献   

4.
Double hierarchical generalized linear models (with discussion)   总被引:2,自引:0,他引:2  
Summary.  We propose a class of double hierarchical generalized linear models in which random effects can be specified for both the mean and dispersion. Heteroscedasticity between clusters can be modelled by introducing random effects in the dispersion model, as is heterogeneity between clusters in the mean model. This class will, among other things, enable models with heavy-tailed distributions to be explored, providing robust estimation against outliers. The h -likelihood provides a unified framework for this new class of models and gives a single algorithm for fitting all members of the class. This algorithm does not require quadrature or prior probabilities.  相似文献   

5.
6.
Summary.  Empirical Bayes techniques for normal theory shrinkage estimation are extended to generalized linear models in a manner retaining the original spirit of shrinkage estimation, which is to reduce risk. The investigation identifies two classes of simple, all-purpose prior distributions, which supplement such non-informative priors as Jeffreys's prior with mechanisms for risk reduction. One new class of priors is motivated as optimizers of a core component of asymptotic risk. The methodology is evaluated in a numerical exploration and application to an existing data set.  相似文献   

7.
In this paper, we introduce the empirical likelihood (EL) method to longitudinal studies. By considering the dependence within subjects in the auxiliary random vectors, we propose a new weighted empirical likelihood (WEL) inference for generalized linear models with longitudinal data. We show that the weighted empirical likelihood ratio always follows an asymptotically standard chi-squared distribution no matter which working weight matrix that we have chosen, but a well chosen working weight matrix can improve the efficiency of statistical inference. Simulations are conducted to demonstrate the accuracy and efficiency of our proposed WEL method, and a real data set is used to illustrate the proposed method.  相似文献   

8.
9.
Normality and independence of error terms are typical assumptions for partial linear models. However, these assumptions may be unrealistic in many fields, such as economics, finance and biostatistics. In this paper, a Bayesian analysis for partial linear model with first-order autoregressive errors belonging to the class of the scale mixtures of normal distributions is studied in detail. The proposed model provides a useful generalization of the symmetrical linear regression model with independent errors, since the distribution of the error term covers both correlated and thick-tailed distributions, and has a convenient hierarchical representation allowing easy implementation of a Markov chain Monte Carlo scheme. In order to examine the robustness of the model against outlying and influential observations, a Bayesian case deletion influence diagnostics based on the Kullback–Leibler (K–L) divergence is presented. The proposed method is applied to monthly and daily returns of two Chilean companies.  相似文献   

10.
The purpose of this paper is to examine the properties of several bias-corrected estimators for generalized linear measurement error models, along with the naive estimator, in some special settings. In particular, we consider logistic regression, poisson regression and exponential-gamma models where the covariates are subject to measurement error. Monte Carlo experiments are conducted to compare the relative performance of the estimators in terms of several criteria. The results indicate that the naive estimator of slope is biased towards zero by a factor increasing with the magnitude of slope and measurement error as well as the sample size. It is found that none of the biased-corrected estimators always outperforms the others, and that their small sample properties typically depend on the underlying model assumptions.  相似文献   

11.
Abstract

Structured sparsity has recently been a very popular technique to deal with the high-dimensional data. In this paper, we mainly focus on the theoretical problems for the overlapping group structure of generalized linear models (GLMs). Although the overlapping group lasso method for GLMs has been widely applied in some applications, the theoretical properties about it are still unknown. Under some general conditions, we presents the oracle inequalities for the estimation and prediction error of overlapping group Lasso method in the generalized linear model setting. Then, we apply these results to the so-called Logistic and Poisson regression models. It is shown that the results of the Lasso and group Lasso procedures for GLMs can be recovered by specifying the group structures in our proposed method. The effect of overlap and the performance of variable selection of our proposed method are both studied by numerical simulations. Finally, we apply our proposed method to two gene expression data sets: the p53 data and the lung cancer data.  相似文献   

12.
The estimation of data transformation is very useful to yield response variables satisfying closely a normal linear model. Generalized linear models enable the fitting of models to a wide range of data types. These models are based on exponential dispersion models. We propose a new class of transformed generalized linear models to extend the Box and Cox models and the generalized linear models. We use the generalized linear model framework to fit these models and discuss maximum likelihood estimation and inference. We give a simple formula to estimate the parameter that index the transformation of the response variable for a subclass of models. We also give a simple formula to estimate the rrth moment of the original dependent variable. We explore the possibility of using these models to time series data to extend the generalized autoregressive moving average models discussed by Benjamin et al. [Generalized autoregressive moving average models. J. Amer. Statist. Assoc. 98, 214–223]. The usefulness of these models is illustrated in a simulation study and in applications to three real data sets.  相似文献   

13.
Jiri Andel 《Statistics》2013,47(4):615-632
The paper is a review of nonlinear processes used in time series analysis and presents some new original results about stationary distribution of a nonlinear autoregres-sive process of the first order. The following models are considered: nonlinear autoregessive processes, threshold AR processes, threshold MA processes, bilinear models, auto-regressive models with random parameters including double stochastic models, exponential AR models, generalized threshold models and smooth transition autoregressive models, Some tests for linearity of processes are also presented.  相似文献   

14.
15.
In this article, we consider the variable selection and estimation for high-dimensional generalized linear models when the number of parameters diverges with the sample size. We propose a penalized quasi-likelihood function with the bridge penalty. The consistency and the Oracle property of the quasi-likelihood bridge estimators are obtained. Some simulations and a real data analysis are given to illustrate the performance of the proposed method.  相似文献   

16.
ABSTRACT

Markov chain Monte Carlo (MCMC) methods can be used for statistical inference. The methods are time-consuming due to time-vary. To resolve these problems, parallel tempering (PT), as a parallel MCMC method, is tried, for dynamic generalized linear models (DGLMs), as well as the several optimal properties of our proposed method. In PT, two or more samples are drawn at the same time, and samples can exchange information with each other. We also present some simulations of the DGLMs in the case and provide two applications of Poisson-type DGLMs in financial research.  相似文献   

17.
The popular diagnostic checking methods in linear time series models are portmanteau tests based on either residual autocorrelation functions (acf) or partial autocorrelation functions (pacf). In this paper, we device some new weighted mixed portmanteau tests by appropriately combining individual tests based on both acf and pacf. We derive the asymptotic distribution of such weighted mixed portmanteau statistics and study their size and power. It is found that the weighted mixed tests outperform when higher order ARMA models are fitted and diagnostic checks are performed via testing lack of residual autocorrelations. Simulation results suggest to use the proposed tests as complementary to those classical tests found in literature. An illustrative application is given to demonstrate the usefulness of the mixed test.  相似文献   

18.
By approximating the nonparametric component using a regression spline in generalized partial linear models (GPLM), robust generalized estimating equations (GEE), involving bounded score function and leverage-based weighting function, can be used to estimate the regression parameters in GPLM robustly for longitudinal data or clustered data. In this paper, score test statistics are proposed for testing the regression parameters with robustness, and their asymptotic distributions under the null hypothesis and a class of local alternative hypotheses are studied. The proposed score tests reply on the estimation of a smaller model without the testing parameters involved, and perform well in the simulation studies and real data analysis conducted in this paper.  相似文献   

19.
Aase (1983) has dealt with recursive estimation in nonlinear time series of autoregressive type including its asymptotic properties. This contribution modifies the results for the case of nonlinear time series with outliers using the principle of M-estimation from robust statistics. Strong consistency of the robust recursive estimates is preserved under corresponding assumptions. Several types of such estimates are compared by means of a numerical simulation.  相似文献   

20.
ABSTRACT

In this article, we propose an approach for incorporating continuous and discrete original outcome distributions into the usual exponential family regression models. The new approach is an extension of the works of Suissa (1991 Suissa, S. (1991). Binary methods for continuous outcomes: A parametric alternative. J. Clin. Epidemiol. 44:241248.[Crossref], [PubMed], [Web of Science ®] [Google Scholar]) and Suissa and Blais (1995 Suissa, S., Blais, L. (1995). Binary regression with continuous outcomes. Stat. Med. 14:247255.[Crossref], [PubMed], [Web of Science ®] [Google Scholar]), which present methods to estimate the risk of an event defined in a sample subspace of an original continuous outcome variable. Simulation studies are presented in order to illustrate the performance of the developed methodology. Real data sets are analyzed by using the proposed models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号