首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Let X 1, X 2,…, X k be k (≥2) independent random variables from gamma populations Π1, Π2,…, Π k with common known shape parameter α and unknown scale parameter θ i , i = 1,2,…,k, respectively. Let X (i) denotes the ith order statistics of X 1,X 2,…,X k . Suppose the population corresponding to largest X (k) (or the smallest X (1)) observation is selected. We consider the problem of estimating the scale parameter θ M (or θ J ) of the selected population under the entropy loss function. For k ≥ 2, we obtain the Unique Minimum Risk Unbiased (UMRU) estimator of θ M (and θ J ). For k = 2, we derive the class of all linear admissible estimators of the form cX (2) (and cX (1)) and show that the UMRU estimator of θ M is inadmissible. The results are extended to some subclass of exponential family.  相似文献   

2.
Let Xi be nonnegative independent random variables with finite expectations and . The value is what can be obtained by a “prophet”. A “mortal” on the other hand, may use k1 stopping rules t1,…,tk yielding a return E[maxi=1,…,kXti]. For nk the optimal return is where the supremum is over all stopping rules which stop by time n. The well known “prophet inequality” states that for all such Xi's and one choice and the constant “2” cannot be improved on for any n2. In contrast we show that for k=2 the best constant d satisfying for all such Xi's depends on n. On the way we obtain constants ck such that .  相似文献   

3.
We are considering the ABLUE’s – asymptotic best linear unbiased estimators – of the location parameter μ and the scale parameter σ of the population jointly based on a set of selected k sample quantiles, when the population distribution has the density of the form
where the standardized function f(u) being of a known functional form.A set of selected sample quantiles with a designated spacing
or in terms of u=(x−μ)/σ
where
λi=∫−∞uif(t) dt, i=1,2,…,k
are given by
x(n1)<x(n2)<<x(nk),
where
Asymptotic distribution of the k sample quantiles when n is very large is given by
h(x(n1),x(n2),…,x(nk);μ,σ)=(2πσ2)k/212−λ1)(λk−λk−1)(1−λk)]−1/2nk/2 exp(−nS/2σ2),
where
fi=f(ui), i=0,1,…,k,k+1,
f0=fk+1=0, λ0=0, λk+1=1.
The relative efficiency of the joint estimation is given by
where
and κ being independent of the spacing . The optimal spacing is the spacing which maximizes the relative efficiency η(μ,σ).We will prove the following rather remarkable theorem. Theorem. The optimal spacing for the joint estimation is symmetric, i.e.
λiki+1=1,
or
ui+uki+1=0, i=1,2,…,k,
if the standardized density f(u) of the population is differentiable infinitely many times and symmetric
f(−u)=f(u), f′(−u)=−f′(u).
  相似文献   

4.
Let π1, …, πk be k (? 2) independent populations, where πi denotes the uniform distribution over the interval (0, θi) and θi > 0 (i = 1, …, k) is an unknown scale parameter. The population associated with the largest scale parameter is called the best population. For selecting the best population, We use a selection rule based on the natural estimators of θi, i = 1, …, k, for the case of unequal sample sizes. Consider the problem of estimating the scale parameter θL of the selected uniform population when sample sizes are unequal and the loss is measured by the squared log error (SLE) loss function. We derive the uniformly minimum risk unbiased (UMRU) estimator of θL under the SLE loss function and two natural estimators of θL are also studied. For k = 2, we derive a sufficient condition for inadmissibility of an estimator of θL. Using these condition, we conclude that the UMRU estimator and natural estimator are inadmissible. Finally, the risk functions of various competing estimators of θL are compared through simulation.  相似文献   

5.
ABSTRACT

Suppose independent random samples are available from k(k ≥ 2) exponential populations ∏1,…,∏ k with a common location θ and scale parameters σ1,…,σ k , respectively. Let X i and Y i denote the minimum and the mean, respectively, of the ith sample, and further let X = min{X 1,…, X k } and T i  = Y i  ? X; i = 1,…, k. For selecting a nonempty subset of {∏1,…,∏ k } containing the best population (the one associated with max{σ1,…,σ k }), we use the decision rule which selects ∏ i if T i  ≥ c max{T 1,…,T k }, i = 1,…, k. Here 0 < c ≤ 1 is chosen so that the probability of including the best population in the selected subset is at least P* (1/k ≤ P* < 1), a pre-assigned level. The problem is to estimate the average worth W of the selected subset, the arithmetic average of means of selected populations. In this article, we derive the uniformly minimum variance unbiased estimator (UMVUE) of W. The bias and risk function of the UMVUE are compared numerically with those of analogs of the best affine equivariant estimator (BAEE) and the maximum likelihood estimator (MLE).  相似文献   

6.
i , i = 1, 2, ..., k be k independent exponential populations with different unknown location parameters θ i , i = 1, 2, ..., k and common known scale parameter σ. Let Y i denote the smallest observation based on a random sample of size n from the i-th population. Suppose a subset of the given k population is selected using the subset selection procedure according to which the population π i is selected iff Y i Y (1)d, where Y (1) is the largest of the Y i 's and d is some suitable constant. The estimation of the location parameters associated with the selected populations is considered for the squared error loss. It is observed that the natural estimator dominates the unbiased estimator. It is also shown that the natural estimator itself is inadmissible and a class of improved estimators that dominate the natural estimator is obtained. The improved estimators are consistent and their risks are shown to be O(kn −2). As a special case, we obtain the coresponding results for the estimation of θ(1), the parameter associated with Y (1). Received: January 6, 1998; revised version: July 11, 2000  相似文献   

7.
Data which is grouped and truncated is considered. We are given numbers n1<…<nk=n and we observe Xni ),i=1,…k, and the tottal number of observations available (N> nk is unknown. If the underlying distribution has one unknown parameter θ which enters as a scale parameter, we examine the form of the equations for both conditional, unconditional and modified maximum likelihood estimators of θ and N and examine when these estimators will be finite, and unique. We also develop expressions for asymptotic bias and search for modified estimators which minimize the maximum asymptotic bias. These results are specialized tG the zxponential distribution. Methods of computing the solutions to the likelihood equatims are also discussed.  相似文献   

8.
Let π01,…,πk be k+1 independent populations. For i=0,1,…,ki has the densit f(xi), where the (unknown) parameter θi belongs to an interval of the real line. Our goal is to select from π1,… πk (experimental treatments) those populations, if any, that are better (suitably defined) than π0 which is the control population. A locally optimal rule is derived in the class of rules for which Pr(πi is selected)γi, i=1,…,k, when θ01=?=θk. The criterion used for local optimality amounts to maximizing the efficiency in a certain sense of the rule in picking out the superior populations for specific configurations of θ=(θ0,…,θk) in a neighborhood of an equiparameter configuration. The general result is then applied to the following special cases: (a) normal means comparison — common known variance, (b) normal means comparison — common unknown variance, (c) gamma scale parameters comparison — known (unequal) shape parameters, and (d) comparison of regression slopes. In all these cases, the rule is obtained based on samples of unequal sizes.  相似文献   

9.
Let X1,…, Xn be mutually independent non-negative integer-valued random variables with probability mass functions fi(x) > 0 for z= 0,1,…. Let E denote the event that {X1X2≥…≥Xn}. This note shows that, conditional on the event E, Xi-Xi+ 1 and Xi+ 1 are independent for all t = 1,…, k if and only if Xi (i= 1,…, k) are geometric random variables, where 1 ≤kn-1. The k geometric distributions can have different parameters θi, i= 1,…, k.  相似文献   

10.
X1, X2, …, Xk are k(k ? 2) uniform populations which each Xi follows U(0, θi). This note shows the test statistic for the null hypothesis H0: θ1 = θ2 = ??? = θk by using the order statistics.  相似文献   

11.
Abstract

Let the data from the ith treatment/population follow a distribution with cumulative distribution function (cdf) F i (x) = F[(x ? μ i )/θ i ], i = 1,…, k (k ≥ 2). Here μ i (?∞ < μ i  < ∞) is the location parameter, θ i i  > 0) is the scale parameter and F(?) is any absolutely continuous cdf, i.e., F i (?) is a member of location-scale family, i = 1,…, k. In this paper, we propose a class of tests to test the null hypothesis H 0 ? θ1 = · = θ k against the simple ordered alternative H A  ? θ1 ≤ · ≤ θ k with at least one strict inequality. In literature, use of sample quasi range as a measure of dispersion has been advocated for small sample size or sample contaminated by outliers [see David, H. A. (1981). Order Statistics. 2nd ed. New York: John Wiley, Sec. 7.4]. Let X i1,…, X in be a random sample of size n from the population π i and R ir  = X i:n?r  ? X i:r+1, r = 0, 1,…, [n/2] ? 1 be the sample quasi range corresponding to this random sample, where X i:j represents the jth order statistic in the ith sample, j = 1,…, n; i = 1,…, k and [x] is the greatest integer less than or equal to x. The proposed class of tests, for the general location scale setup, is based on the statistic W r  = max1≤i<jk (R jr /R ir ). The test is reject H 0 for large values of W r . The construction of a three-decision procedure and simultaneous one-sided lower confidence bounds for the ratios, θ j i , 1 ≤ i < j ≤ k, have also been discussed with the help of the critical constants of the test statistic W r . Applications of the proposed class of tests to two parameter exponential and uniform probability models have been discussed separately with necessary tables. Comparisons of some members of our class with the tests of Gill and Dhawan [Gill A. N., Dhawan A. K. (1999). A One-sided test for testing homogeneity of scale parameters against ordered alternative. Commun. Stat. – Theory and Methods 28(10):2417–2439] and Kochar and Gupta [Kochar, S. C., Gupta, R. P. (1985). A class of distribution-free tests for testing homogeneity of variances against ordered alternatives. In: Dykstra, R. et al., ed. Proceedings of the Conference on Advances in Order Restricted Statistical Inference at Iowa city. Springer Verlag, pp. 169–183], in terms of simulated power, are also presented.  相似文献   

12.
Let X 1 and X 2 be two independent random variables from normal populations Π1, Π2 with different unknown location parameters θ1 and θ2, respectively and common known scale parameter σ. Let X (2) = max (X 1, X 2) and X (1) = min (X 1, X 2). We consider the problem of estimating the location parameter θ M (or θ J ) of the selected population under the reflected normal loss function. We obtain minimax estimators of θ M and θ J . Also, we provide sufficient conditions for the inadmissibility of invariant estimators of θ M and θ J .  相似文献   

13.
ABSTRACT

Consider k(≥ 2) independent exponential populations Π1, Π2, …, Π k , having the common unknown location parameter μ ∈ (?∞, ∞) (also called the guarantee time) and unknown scale parameters σ1, σ2, …σ k , respectively (also called the remaining mean lifetimes after the completion of guarantee times), σ i  > 0, i = 1, 2, …, k. Assume that the correct ordering between σ1, σ2, …, σ k is not known apriori and let σ[i], i = 1, 2, …, k, denote the ith smallest of σ j s, so that σ[1] ≤ σ[2] ··· ≤ σ[k]. Then Θ i  = μ + σ i is the mean lifetime of Π i , i = 1, 2, …, k. Let Θ[1] ≤ Θ[2] ··· ≤ Θ[k] denote the ranked values of the Θ j s, so that Θ[i] = μ + σ[i], i = 1, 2, …, k, and let Π(i) denote the unknown population associated with the ith smallest mean lifetime Θ[i] = μ + σ[i], i = 1, 2, …, k. Based on independent random samples from the k populations, we propose a selection procedure for the goal of selecting the population having the longest mean lifetime Θ[k] (called the “best” population), under the subset selection formulation. Tables for the implementation of the proposed selection procedure are provided. It is established that the proposed subset selection procedure is monotone for a general k (≥ 2). For k = 2, we consider the loss measured by the size of the selected subset and establish that the proposed subset selection procedure is minimax among selection procedures that satisfy a certain probability requirement (called the P*-condition) for the inclusion of the best population in the selected subset.  相似文献   

14.
Let be k independent populations having the same known quantile of order p (0 p 1) and let F(x)=F(x/i) be the absolutely continuous cumulative distribution function of the ith population indexed by the scale parameter 1, i = 1,…, k. We propose subset selection procedures based on two-sample U-statistics for selecting a subset of k populations containing the one associated with the smallest scale parameter. These procedures are compared with the subset selection procedures based on two-sample linear rank statistics given by Gill & Mehta (1989) in the sense of Pitman asymptotic relative efficiency, with interesting results.  相似文献   

15.
Let X(1,n,m1,k),X(2,n,m2,k),…,X(n,n,m,k) be n generalized order statistics from a continuous distribution F which is strictly increasing over (a,b),−a<b, the support of F. Let g be an absolutely continuous and monotonically increasing function in (a,b) with finite g(a+),g(b) and E(g(X)). Then for some positive integer s,1<sn, we give characterization of distributions by means of
  相似文献   

16.
Isometry is the independence of a size variable G(X) and shape. This note characterizes G(X) =γΦXb1i as the only continuous size variable for which isometry with respect to G can continue to hold for all unequal changes of scale of the variables Xi, assuming some conditions on the ranges of the Xi.  相似文献   

17.
Suppose a subset of populations is selected from k exponential populations with unknown location parameters θ1, θ2, …, θk and common known scale parameter σ. We consider the estimation of the location parameter of the selected population and the average worth of the selected subset under an asymmetric LINEX loss function. We show that the natural estimator of these parameters is biased and find the uniformly minimum risk-unbiased (UMRU) estimator of these parameters. In the case of k = 2, we find the minimax estimator of the location parameter of the smallest selected population. Furthermore, we compare numerically the risk of UMRU, minimax, and the natural estimators.  相似文献   

18.
In this article, we establish some new results on stochastic comparisons of the maxima of two heterogenous gamma variables with different shape and scale parameters. Let X1 and X2 [X*1 and X*2] be two independent gamma variables with Xi?[X*i] having shape parameter ri?[r*i] and scale parameter λi?[λ*i], i = 1, 2. It is shown that the likelihood ratio order holds between the maxima, X2: 2 and X*2: 2 when λ1 = λ*1 ? λ2 = λ*2 and r1 ? r*1 ? r2 = r*2. We also prove that, if ri, r*i ∈ (0, 1], (r1, r2) majorizes (r*1, r2*), and (λ1, λ2) is p-larger than (λ*1, λ2*), then X2: 2 is larger than X*2: 2 in the sense of the hazard rate order [dispersive order]. Some numerical examples are provided to illustrate the main results. The new results established here strengthen and generalize some of the results known in the literature.  相似文献   

19.
Consider k independent random samples such that ith sample is drawn from a two-parameter exponential population with location parameter μi and scale parameter θi,?i = 1, …, k. For simultaneously testing differences between location parameters of successive exponential populations, closed testing procedures are proposed separately for the following cases (i) when scale parameters are unknown and equal and (ii) when scale parameters are unknown and unequal. Critical constants required for the proposed procedures are obtained numerically and the selected values of the critical constants are tabulated. Simulation study revealed that the proposed procedures has better ability to detect the significant differences and has more power in comparison to exiting procedures. The illustration of the proposed procedures is given using real data.  相似文献   

20.
Let Δ k:n  = X k,n  − X k-1,n (k = 1, 2, . . . , n + 1) be the spacings based on uniform order statistics, provided X 0,n  = 0 and X n+1,n  = 1. Obtained from uniform spacings, ordered uniform spacings 0 = Δ0,n  < Δ1,n  < . . . < Δ n+1,n , are discussed in the present paper. Distributional and limit results for them are in the focus of our attention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号