Demography - One of the most consistent patterns in the social sciences is the relationship between sibship size and educational outcomes: those with fewer siblings outperform those with many. The... 相似文献
The skew-generalized-normal distribution [Arellano-Valle, RB, Gómez, HW, Quintana, FA. A new class of skew-normal distributions. Comm Statist Theory Methods 2004;33(7):1465–1480] is a class of asymmetric normal distributions, which contains the normal and skew-normal distributions as special cases. The main virtues of this distribution is that it is easy to simulate from and it also supplies a genuine expectation–maximization (EM) algorithm for maximum likelihood estimation. In this paper, we extend the EM algorithm for linear regression models assuming skew-generalized-normal random errors and we develop a diagnostics analyses via local influence and generalized leverage, following Zhu and Lee's approach. This is because Cook's well-known approach would be more complicated to use to obtain measures of local influence. Finally, results obtained for a real data set are reported, illustrating the usefulness of the proposed method. 相似文献
Measuring school effectiveness using student test scores is controversial and some methods used for this can be inaccurate in some situations. The validity of two statistical models – the Student Growth Percentile (SGP) model and a multilevel gain score model – are evaluated. The SGP model conditions on previous test scores thereby unblocking a backdoor path between true school/teacher effectiveness and student test scores. When the product of the coefficients that make up this unblocked backdoor path is positive, the SGP estimates can be inaccurate. The accuracy of the multilevel gain score model was not associated with the product of this backdoor path. The gain score model appears promising in these situations where the SGP and other covariate adjusted models perform poorly. 相似文献
Group testing has its origin in the identification of syphilis in the U.S. army during World War II. Much of the theoretical framework of group testing was developed starting in the late 1950s, with continued work into the 1990s. Recently, with the advent of new laboratory and genetic technologies, there has been an increasing interest in group testing designs for cost saving purposes. In this article, we compare different nested designs, including Dorfman, Sterrett and an optimal nested procedure obtained through dynamic programming. To elucidate these comparisons, we develop closed-form expressions for the optimal Sterrett procedure and provide a concise review of the prior literature for other commonly used procedures. We consider designs where the prevalence of disease is known as well as investigate the robustness of these procedures, when it is incorrectly assumed. This article provides a technical presentation that will be of interest to researchers as well as from a pedagogical perspective. Supplementary material for this article is available online. 相似文献
Ridge regression is the alternative method to ordinary least squares, which is mostly applied when a multiple linear regression model presents a worrying degree of collinearity. A relevant topic in ridge regression is the selection of the ridge parameter, and different proposals have been presented in the scientific literature. Since the ridge estimator is biased, its estimation is normally based on the calculation of the mean square error (MSE) without considering (to the best of our knowledge) whether the proposed value for the ridge parameter really mitigates the collinearity. With this goal and different simulations, this paper proposes to estimate the ridge parameter from the determinant of the matrix of correlation of the data, which verifies that the variance inflation factor (VIF) is lower than the traditionally established threshold. The possible relation between the VIF and the determinant of the matrix of correlation is also analysed. Finally, the contribution is illustrated with three real examples. 相似文献
The standard location and scale unrestricted (or unified) skew-normal (SUN) family studied by Arellano-Valle and Genton [On fundamental skew distributions. J Multivar Anal. 2005;96:93–116] and Arellano-Valle and Azzalini [On the unification of families of skew-normal distributions. Scand J Stat. 2006;33:561–574], allows the modelling of data which is symmetrically or asymmetrically distributed. The family has a number of advantages suitable for the analysis of stochastic processes such as Auto-Regressive Moving-Average (ARMA) models, including being closed under linear combinations, being able to satisfy the consistency condition of Kolmogorov’s theorem and providing the guarantee of the existence of such a SUN stochastic process. The family is able to be represented in a hierarchical form which can be used for the ease of simulation. In addition, it facilitates an EM-type algorithm to estimate the model parameters. The performances and suitability of the proposed model are demonstrated on simulations and using two real data sets in applications. 相似文献
Statistical process monitoring (SPM) is a very efficient tool to maintain and to improve the quality of a product. In many industrial processes, end product has two or more attribute-type quality characteristics. Some of them are independent, but the observations are Markovian dependent. It is essential to develop a control chart for such situations. In this article, we develop an Independent Attributes Control Chart for Markov Dependent Processes based on error probabilities criterion under the assumption of one-step Markov dependency. Implementation of the chart is similar to that of Shewhart-type chart. Performance of the chart has been studied using probability of detecting shift criterion. A procedure to identify the attribute(s) responsible for out-of-control status of the process is given. 相似文献
In this paper, we introduce an unrestricted skew-normal generalized hyperbolic (SUNGH) distribution for use in finite mixture modeling or clustering problems. The SUNGH is a broad class of flexible distributions that includes various other well-known asymmetric and symmetric families such as the scale mixtures of skew-normal, the skew-normal generalized hyperbolic and its corresponding symmetric versions. The class of distributions provides a much needed unified framework where the choice of the best fitting distribution can proceed quite naturally through either parameter estimation or by placing constraints on specific parameters and assessing through model choice criteria. The class has several desirable properties, including an analytically tractable density and ease of computation for simulation and estimation of parameters. We illustrate the flexibility of the proposed class of distributions in a mixture modeling context using a Bayesian framework and assess the performance using simulated and real data.
In this paper, we extend the censored linear regression model with normal errors to Student-t errors. A simple EM-type algorithm for iteratively computing maximum-likelihood estimates of the parameters is presented. To examine the performance of the proposed model, case-deletion and local influence techniques are developed to show its robust aspect against outlying and influential observations. This is done by the analysis of the sensitivity of the EM estimates under some usual perturbation schemes in the model or data and by inspecting some proposed diagnostic graphics. The efficacy of the method is verified through the analysis of simulated data sets and modelling a real data set first analysed under normal errors. The proposed algorithm and methods are implemented in the R package CensRegMod. 相似文献