首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   693篇
  免费   19篇
管理学   54篇
民族学   5篇
人口学   81篇
丛书文集   3篇
理论方法论   82篇
综合类   17篇
社会学   404篇
统计学   66篇
  2023年   8篇
  2022年   1篇
  2021年   1篇
  2020年   17篇
  2019年   26篇
  2018年   37篇
  2017年   41篇
  2016年   24篇
  2015年   31篇
  2014年   17篇
  2013年   119篇
  2012年   31篇
  2011年   31篇
  2010年   29篇
  2009年   23篇
  2008年   29篇
  2007年   29篇
  2006年   24篇
  2005年   28篇
  2004年   21篇
  2003年   21篇
  2002年   15篇
  2001年   19篇
  2000年   10篇
  1999年   8篇
  1998年   7篇
  1997年   10篇
  1996年   12篇
  1995年   5篇
  1994年   2篇
  1993年   4篇
  1992年   4篇
  1991年   1篇
  1990年   4篇
  1989年   4篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有712条查询结果,搜索用时 15 毫秒
711.
Conventionally, elements of a multiattribute utility model characterizing a decision maker's preferences, such as attribute weights and attribute utilities, are treated as deterministic, which may be unrealistic because assessment of such elements can be imprecise and erroneous, or differ among a group of individuals. Moreover, attempting to make precise assessments can be time consuming and cognitively demanding. We propose to treat such elements as stochastic variables to account for inconsistency and imprecision in such assessments. Under these assumptions, we develop procedures for computing the probability distribution of aggregate utility for an additive multiattribute utility function (MAUF), based on the Edgeworth expansion. When the distributions of aggregate utility for all alternatives in a decision problem are known, stochastic dominance can then be invoked to filter inferior alternatives. We show that, under certain mild conditions, the aggregate utility distribution approaches normality as the number of attributes increases. Thus, only a few terms from the Edgeworth expansion with a standard normal density as the base function will be sufficient for approximating an aggregate utility distribution in practice. Moreover, the more symmetric the attribute utility distributions, the fewer the attributes to achieve normality. The Edgeworth expansion thus can provide a basis for a computationally viable approach for representing an aggregate utility distribution with imprecisely specified attribute weights and utilities assessments (or differing weights and utilities across individuals). Practical guidelines for using the Edgeworth approximation are given. The proposed methodology is illustrated using a vendor selection problem.  相似文献   
712.
Let j and k be two positive integers with jk. An L(j,k)-labelling of a graph G is an assignment of nonnegative integers to the vertices of G such that the difference between labels of any two adjacent vertices is at least j, and the difference between labels of any two vertices that are at distance two apart is at least k. The minimum range of labels over all L(j,k)-labellings of a graph G is called the λ j,k -number of G, denoted by λ j,k (G). A σ(j,k)-circular labelling with span m of a graph G is a function f:V(G)→{0,1,…,m−1} such that |f(u)−f(v)| m j if u and v are adjacent; and |f(u)−f(v)| m k if u and v are at distance two apart, where |x| m =min {|x|,m−|x|}. The minimum m such that there exists a σ(j,k)-circular labelling with span m for G is called the σ j,k -number of G and denoted by σ j,k (G). The λ j,k -numbers of Cartesian products of two complete graphs were determined by Georges, Mauro and Stein ((2000) SIAM J Discret Math 14:28–35). This paper determines the λ j,k -numbers of direct products of two complete graphs and the σ j,k -numbers of direct products and Cartesian products of two complete graphs. Dedicated to Professor Frank K. Hwang on the occasion of his 65th birthday. This work is partially supported by FRG, Hong Kong Baptist University, Hong Kong; NSFC, China, grant 10171013; and Southeast University Science Foundation grant XJ0607230.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号