首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25584篇
  免费   560篇
  国内免费   102篇
管理学   2263篇
劳动科学   38篇
民族学   564篇
人才学   24篇
人口学   2653篇
丛书文集   4783篇
理论方法论   1167篇
综合类   7242篇
社会学   5235篇
统计学   2277篇
  2024年   5篇
  2023年   58篇
  2022年   240篇
  2021年   245篇
  2020年   198篇
  2019年   151篇
  2018年   1827篇
  2017年   1973篇
  2016年   1296篇
  2015年   498篇
  2014年   564篇
  2013年   795篇
  2012年   1147篇
  2011年   2265篇
  2010年   2236篇
  2009年   2022篇
  2008年   1936篇
  2007年   2217篇
  2006年   1305篇
  2005年   1234篇
  2004年   799篇
  2003年   620篇
  2002年   612篇
  2001年   441篇
  2000年   290篇
  1999年   241篇
  1998年   147篇
  1997年   157篇
  1996年   192篇
  1995年   126篇
  1994年   83篇
  1993年   76篇
  1992年   72篇
  1991年   43篇
  1990年   44篇
  1989年   19篇
  1988年   29篇
  1987年   14篇
  1986年   5篇
  1985年   6篇
  1984年   5篇
  1983年   2篇
  1982年   4篇
  1981年   5篇
  1980年   2篇
排序方式: 共有10000条查询结果,搜索用时 506 毫秒
991.
In the facility location game on a line, there are some agents who have fixed locations on the line where an obnoxious facility will be placed. The objective is to maximize the social welfare, e.g., the sum of distances from the facility to all agents. On collecting location information, agents may misreport the locations so as to stay far away from the obnoxious facility. In this paper, strategy-proof mechanisms are designed and the approximation ratio is used to measure the performances of the strategy-proof mechanisms. Two objective functions, maximizing the sum of squares of distances (maxSOS) and maximizing the sum of distances (maxSum), have been considered. For maxSOS, a randomized 5/3-approximated strategy-proof mechanism is proposed, and the lower bound of the approximation ratio is proved to be at least 1.042. For maxSum, the lower bound of the approximation ratio of the randomized strategy-proof mechanism is proved to be 1.077. Moreover, a general model is considered that each agent may have multiple locations on the line. For the objective functions maxSum and maxSOS, both deterministic and randomized strategy-proof mechanisms are investigated, and the deterministic mechanisms are shown to be best possible.  相似文献   
992.
Tree representations of (sets of) symmetric binary relations, or equivalently edge-colored undirected graphs, are of central interest, e.g. in phylogenomics. In this context symbolic ultrametrics play a crucial role. Symbolic ultrametrics define an edge-colored complete graph that allows to represent the topology of this graph as a vertex-colored tree. Here, we are interested in the structure and the complexity of certain combinatorial problems resulting from considerations based on symbolic ultrametrics, and on algorithms to solve them.This includes, the characterization of symbolic ultrametrics that additionally distinguishes between edges and non-edges of arbitrary edge-colored graphs G and thus, yielding a tree representation of G, by means of so-called cographs. Moreover, we address the problem of finding “closest” symbolic ultrametrics and show the NP-completeness of the three problems: symbolic ultrametric editing, completion and deletion. Finally, as not all graphs are cographs, and hence, do not have a tree representation, we ask, furthermore, what is the minimum number of cotrees needed to represent the topology of an arbitrary non-cograph G. This is equivalent to find an optimal cograph edge k-decomposition \(\{E_1,\dots ,E_k\}\) of E so that each subgraph \((V,E_i)\) of G is a cograph. We investigate this problem in full detail, resulting in several new open problems, and NP-hardness results.For all optimization problems proven to be NP-hard we will provide integer linear program formulations to solve them.  相似文献   
993.
A vertex subset S of a digraph D is called a dominating set of D if every vertex not in S is adjacent from at least one vertex in S. The domination number of D, denoted by \(\gamma (D)\), is the minimum cardinality of a dominating set of D. The Slater number \(s\ell (D)\) is the smallest integer t such that t added to the sum of the first t terms of the non-increasing out-degree sequence of D is at least as large as the order of D. For any digraph D of order n with maximum out-degree \(\Delta ^+\), it is known that \(\gamma (D)\ge \lceil n/(\Delta ^++1)\rceil \). We show that \(\gamma (D)\ge s\ell (D)\ge \lceil n/(\Delta ^++1)\rceil \) and the difference between \(s\ell (D)\) and \(\lceil n/(\Delta ^++1)\rceil \) can be arbitrarily large. In particular, for an oriented tree T of order n with \(n_0\) vertices of out-degree 0, we show that \((n-n_0+1)/2\le s\ell (T)\le \gamma (T)\le 2s\ell (T)-1\) and moreover, each value between the lower bound \(s\ell (T)\) and the upper bound \(2s\ell (T)-1\) is attainable by \(\gamma (T)\) for some oriented trees. Further, we characterize the oriented trees T for which \(s\ell (T)=(n-n_0+1)/2\) hold and show that the difference between \(s\ell (T)\) and \((n-n_0+1)/2\) can be arbitrarily large. Some other elementary properties involving the Slater number are also presented.  相似文献   
994.
In 1984, Gabow and Tarjan provided a very elegant and fast algorithm for the following problem: given a matroid defined on a red and blue colored ground set, determine a basis of minimum cost among those with k red elements, or decide that no such basis exists. In this paper, we investigate extensions of this problem from ordinary matroids to the more general notion of poset matroids which take precedence constraints on the ground set into account. We show that the problem on general poset matroids becomes -hard, already if the underlying partially ordered set (poset) consists of binary trees of height two. On the positive side, we present two algorithms: a pseudopolynomial one for integer polymatroids, i.e., the case where the poset consists of disjoint chains, and a polynomial algorithm for the problem to determine a minimum cost ideal of size l with k red elements, i.e., the uniform rank-l poset matroid, on series-parallel posets.  相似文献   
995.
We investigate special cases of the quadratic minimum spanning tree problem (QMSTP) on a graph \(G=(V,E)\) that can be solved as a linear minimum spanning tree problem. We give a characterization of such problems when G is a complete graph, which is the standard case in the QMSTP literature. We extend our characterization to a larger class of graphs that include complete bipartite graphs and cactuses, among others. Our characterization can be verified in \(O(|E|^2)\) time. In the case of complete graphs and when the cost matrix is given in factored form, we show that our characterization can be verified in O(|E|) time. Related open problems are also indicated.  相似文献   
996.
We study uniqueness of Nash equilibria in atomic splittable congestion games and derive a uniqueness result based on polymatroid theory: when the strategy space of every player is a bidirectional flow polymatroid, then equilibria are unique. Bidirectional flow polymatroids are introduced as a subclass of polymatroids possessing certain exchange properties. We show that important cases such as base orderable matroids can be recovered as a special case of bidirectional flow polymatroids. On the other hand we show that matroidal set systems are in some sense necessary to guarantee uniqueness of equilibria: for every atomic splittable congestion game with at least three players and non-matroidal set systems per player, there is an isomorphic game having multiple equilibria. Our results leave a gap between base orderable matroids and general matroids for which we do not know whether equilibria are unique.  相似文献   
997.
We introduce and study optimization problems which are related to the well-known Subset Sum problem. In each new problem, a node-weighted digraph is given and one has to select a subset of vertices whose total weight does not exceed a given budget. Some additional constraints called digraph constraints and maximality need to be satisfied. The digraph constraint imposes that a node must belong to the solution if at least one of its predecessors is in the solution. An alternative of this constraint says that a node must belong to the solution if all its predecessors are in the solution. The maximality constraint ensures that no superset of a feasible solution is also feasible. The combination of these constraints provides four problems. We study their complexity and present some approximation results according to the type of input digraph, such as directed acyclic graphs and oriented trees.  相似文献   
998.
In this paper we consider the multidimensional binary vector assignment problem. An input of this problem is defined by m disjoint multisets \(V^1, V^2, \ldots , V^m\), each composed of n binary vectors of size p. An output is a set of n disjoint m-tuples of vectors, where each m-tuple is obtained by picking one vector from each multiset \(V^i\). To each m-tuple we associate a p dimensional vector by applying the bit-wise AND operation on the m vectors of the tuple. The objective is to minimize the total number of zeros in these n vectors. We denote this problem by Open image in new window , and the restriction of this problem where every vector has at most c zeros by Open image in new window . Open image in new window was only known to be Open image in new window -hard, even for Open image in new window . We show that, assuming the unique games conjecture, it is Open image in new window -hard to Open image in new window -approximate Open image in new window for any fixed Open image in new window and Open image in new window . This result is tight as any solution is a Open image in new window -approximation. We also prove without assuming UGC that Open image in new window is Open image in new window -hard even for Open image in new window . Finally, we show that Open image in new window is polynomial-time solvable for fixed Open image in new window (which cannot be extended to Open image in new window ).  相似文献   
999.
An oriented graph \(G^\sigma \) is a digraph without loops or multiple arcs whose underlying graph is G. Let \(S\left( G^\sigma \right) \) be the skew-adjacency matrix of \(G^\sigma \) and \(\alpha (G)\) be the independence number of G. The rank of \(S(G^\sigma )\) is called the skew-rank of \(G^\sigma \), denoted by \(sr(G^\sigma )\). Wong et al. (Eur J Comb 54:76–86, 2016) studied the relationship between the skew-rank of an oriented graph and the rank of its underlying graph. In this paper, the correlation involving the skew-rank, the independence number, and some other parameters are considered. First we show that \(sr(G^\sigma )+2\alpha (G)\geqslant 2|V_G|-2d(G)\), where \(|V_G|\) is the order of G and d(G) is the dimension of cycle space of G. We also obtain sharp lower bounds for \(sr(G^\sigma )+\alpha (G),\, sr(G^\sigma )-\alpha (G)\), \(sr(G^\sigma )/\alpha (G)\) and characterize all corresponding extremal graphs.  相似文献   
1000.
Because of its application in the field of security in wireless sensor networks, k-path vertex cover (\(\hbox {VCP}_k\)) has received a lot of attention in recent years. Given a graph \(G=(V,E)\), a vertex set \(C\subseteq V\) is a k-path vertex cover (\(\hbox {VCP}_k\)) of G if every path on k vertices has at least one vertex in C, and C is a connected k-path vertex cover of G (\(\hbox {CVCP}_k\)) if furthermore the subgraph of G induced by C is connected. A homogeneous wireless sensor network can be modeled as a unit disk graph. This paper presents a new PTAS for \(\hbox {MinCVCP}_k\) on unit disk graphs. Compared with previous PTAS given by Liu et al., our method not only simplifies the algorithm and reduces the time-complexity, but also simplifies the analysis by a large amount.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号