排序方式: 共有31条查询结果,搜索用时 15 毫秒
31.
This article reviews four area-level linear mixed models that borrow strength by exploiting the possible correlation among the neighboring areas or/and past time periods. Its main goal is to study if there are efficiency gains when a spatial dependence or/and a temporal autocorrelation among random-area effects are included into the models. The Fay–Herriot estimator is used as benchmark. A design-based simulation study based on real data collected from a longitudinal survey conducted by a statistical office is presented. Our results show that models that explore both spatial and chronological association considerably improve the efficiency of small area estimates. 相似文献