排序方式: 共有16条查询结果,搜索用时 15 毫秒
11.
Marginalised models, also known as marginally specified models, have recently become a popular tool for analysis of discrete longitudinal data. Despite being a novel statistical methodology, these models introduce complex constraint equations and model fitting algorithms. On the other hand, there is a lack of publicly available software to fit these models. In this paper, we propose a three-level marginalised model for analysis of multivariate longitudinal binary outcome. The implicit function theorem is introduced to approximately solve the marginal constraint equations explicitly. probit link enables direct solutions to the convolution equations. Parameters are estimated by maximum likelihood via a Fisher–Scoring algorithm. A simulation study is conducted to examine the finite-sample properties of the estimator. We illustrate the model with an application to the data set from the Iowa Youth and Families Project. The R package pnmtrem is prepared to fit the model. 相似文献
12.
Box–Cox power transformation is a commonly used methodology to transform the distribution of the data into a normal distribution. The methodology relies on a single transformation parameter. In this study, we focus on the estimation of this parameter. For this purpose, we employ seven popular goodness-of-fit tests for normality, namely Shapiro–Wilk, Anderson–Darling, Cramer-von Mises, Pearson Chi-square, Shapiro-Francia, Lilliefors and Jarque–Bera tests, together with a searching algorithm. The searching algorithm is based on finding the argument of the minimum or maximum depending on the test, i.e., maximum for the Shapiro–Wilk and Shapiro–Francia, minimum for the rest. The artificial covariate method of Dag et al. (2014) is also included for comparison purposes. Simulation studies are implemented to compare the performances of the methods. Results show that Shapiro–Wilk and the artificial covariate method are more effective than the others and Pearson Chi-square is the worst performing method. The methods are also applied to two real-life datasets. The R package AID is proposed for implementation of the aforementioned methods. 相似文献
13.
In the context of estimating regression coefficients of an ill-conditioned binary logistic regression model, we develop a new biased estimator having two parameters for estimating the regression vector parameter β when it is subjected to lie in the linear subspace restriction Hβ = h. The matrix mean squared error and mean squared error (MSE) functions of these newly defined estimators are derived. Moreover, a method to choose the two parameters is proposed. Then, the performance of the proposed estimator is compared to that of the restricted maximum likelihood estimator and some other existing estimators in the sense of MSE via a Monte Carlo simulation study. According to the simulation results, the performance of the estimators depends on the sample size, number of explanatory variables, and degree of correlation. The superiority region of our proposed estimator is identified based on the biasing parameters, numerically. It is concluded that the new estimator is superior to the others in most of the situations considered and it is recommended to the researchers. 相似文献
14.
The binary logistic regression is a commonly used statistical method when the outcome variable is dichotomous or binary. The explanatory variables are correlated in some situations of the logit model. This problem is called multicollinearity. It is known that the variance of the maximum likelihood estimator (MLE) is inflated in the presence of multicollinearity. Therefore, in this study, we define a new two-parameter ridge estimator for the logistic regression model to decrease the variance and overcome multicollinearity problem. We compare the new estimator to the other well-known estimators by studying their mean squared error (MSE) properties. Moreover, a Monte Carlo simulation is designed to evaluate the performances of the estimators. Finally, a real data application is illustrated to show the applicability of the new method. According to the results of the simulation and real application, the new estimator outperforms the other estimators for all of the situations considered. 相似文献
15.
Mohamed El-Shinawi Karim Osama Mohamed Yousef Ahmed Fouad Yara Mohamed Fahmy Hadeel Abdulwahed Asar Mohamed Gomaa Khalil 《Accountability in research》2016,23(4):199-218
This is a quasi-experimental pre-post assessment study utilizing an anonymous self-administered questionnaire to assess Egyptian medical students’ awareness about responsible conduct of research (RCR) and research ethics. Students’ were assessed before and after an RCR awareness campaign. Our results showed that most of the pre-campaign respondents were not familiar with the basic principles and terms of RCR. An increase in the awareness about RCR across all discussed topics was noted following the campaign. We concluded that an educational awareness campaign is effective in increasing medical students’ awareness about RCR and should be incorporated into current medical school curricula in Egypt. 相似文献
16.
Box-Cox transformation is one of the most commonly used methodologies when data do not follow normal distribution. However, its use is restricted since it usually requires the availability of covariates. In this article, the use of a non-informative auxiliary variable is proposed for the implementation of Box-Cox transformation. Simulation studies are conducted to illustrate that the proposed approach is successful in attaining normality under different sample sizes and most of the distributions and in estimating transformation parameter for different sample sizes and mean-variance combinations. Methodology is illustrated on two real-life datasets. 相似文献